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Preface to the Digital Edition

The second edition of The C Programming Language was published early in
1988. At that time, the first C standard was almost complete, formalizing and
codifying the precise definition of the language. There have been two revisions
to the standard since then, in 1999 and 2011, that added a number of language
features and cleared up a few minor issues. But for many programmers, the
1988 definition of C covers the parts of the language that they use, so it has
never seemed necessary to update the book itself to track the newer standards.
Thus, the digital version is intentionally identical to the print edition.fi

On the other hand, the computing world is very different from what it was
in 1988. The Internet has gone from a network primarily for researchers at
universities to a universal network linking everyone on the planet. Computers
have continued to get smaller, cheaper, and faster; a typical laptop or cell phone
today has more computing power than a supercomputer of 1988, yet costs so
little that probably half the people in the world have one. Languages such as
C++, Objective-C, Java, and JavaScript make it easier to program these systems
as well; all of them borrow heavily from C.

Remarkably, in spite of all of this change, C retains a central position. It
1s still the core language for operating system implementation and tool build-
ing. It remains unequaled for portability, efficiency, and ability to get close to
the hardware when necessary. C has sometimes been called a high-level assem-
bler, and this is not a bad characterization of how well it spans the range from
intricate data structure and control flow to the lowest level of external devices.

Sadly, Dennis Ritchie, the creator of C and the coauthor of this book, died
in October 2011 at the age of 70 and never saw this digital edition. Dennis was
a great language designer and programmer, and a superb writer, but he was also
funny, warm, and exceptionally kind. We are all in his debt. He will be greatly
missed.

Brian Kernighan
Princeton, New Jersey
November 2012

*Note: Example code can now be downloaded by visiting www.informit.com/store/c
programming-language-9780131103627.


http://www.informit.com/store/c-programming-language-9780131103627
http://www.informit.com/store/c-programming-language-9780131103627
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Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined
to demonstrate a need for a more precise and more contemporary definition of
the language than the first edition of this book provided. In 1983, the Ameri-
can National Standards Institute (ANSI) established a committee whose goal
was to produce “an unambiguous and machine-independent definition of the
language C,” while still retaining its spirit. The result is the ANSI standard for
C.

The standard formalizes constructions that were hinted at but not de-
scribed in the first edition, particularly structure assignment and enumerations.
It provides a new form of function declaration that permits cross-checking
of definition with use. It specifies a standard library, with an extensive set
of functions for performing input and output, memory management, string
manipulation, and similar tasks. It makes precise the behavior of features
that were not spelled out in the original definition, and at the same time states
explicitly which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already sup-
port most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big lan-
guage, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

vil



viii PREFACE

examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C “wears well as one’s experi-
ence with it grows.” With a decade more experience, we still feel that way. We
hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second
edition. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob
Pike gave us perceptive comments on almost every page of draft manuscripts.
We are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell,
G. R. Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol,
John Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We
also received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter
Weinberger. Dave Prosser answered many detailed questions about the ANSI
standard. We used Bjarne Stroustrup’s C++ translator extensively for local
testing of our programs, and Dave Kristol provided us with an ANSI C
compiler for final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie



Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
Cis not a “very high level” language, nor a “big” one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating
system on the DEC PDP-11, by Dennis Ritchie. The operating system, the C
compiler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. Cis not tied to any particular hardware or system,
however, and it is easy to write programs that will run without change on any
machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible, sep-
arate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested di-
rectly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some
familiarity with basic programming concepts like variables, assignment state-
ments, loops, and functions. Nonetheless, a novice programmer should be able
to read along and pick up the language, although access to a more knowledge-
able colleague will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one’s experience with it grows. We hope that this book will help you to use
it well.
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The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill Roome, Bob Rosin,
and Larry Rosler all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion Har-
ris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie



Introduction

C is a general-purpose programming language. It has been closely asso-
ciated with the UNIX system where it was developed, since both the system
and most of the programs that run on it are written in C. The language, how-
ever, is not tied to any one operating system or machine; and although it has
been called a “system programming language” because it is useful for writing
compilers and operating systems, it has been used equally well to write major
programs in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first UNIX
system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived
data types created with pointers, arrays, structures, and unions. Expressions
are formed from operators and operands; any expression, including an assign-
ment or a function call, can be a statement. Pointers provide for machine-
independent address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), select-
ing one of a set of possible cases (switch), looping with the termination test at
the top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically “auto-
matic,” or created anew with each invocation. Function definitions may not
be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclu-
sion of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not pejo-
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rative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The lan-
guage does not define any storage allocation facility other than static definition
and the stack discipline provided by the local variables of functions; there is no
heap or garbage collection. Finally, C itself provides no input/output facilities;
there are no READ or WRITE statements, and no built-in file access methods.
All of these higher-level mechanisms must be provided by explicitly-called func-
tions. Most C implementations have included a reasonably standard collection
of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel oper-
ations, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (““Youmean I have to call a function to compare two character strings?”),
keeping the language down to modest size has real benefits. Since C is relatively
small, it can be described in a small space, and learned quickly. A programmer
can reasonably expect to know and understand and indeed regularly use the
entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National Stan-
dards Institute (ANSI) established a committee to provide a modern, compre-
hensive definition of C. The resulting definition, the ANSI standard, or “ANSI
C,” was completed late in 1988. Most of the features of the standard are already
supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure
that most existing programs would remain valid, or, failing that, that compilers
could produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor



effects on most programmers.

A second significant contribution of the standard is the definition of a li-
brary to accompany C. It specifies functions for accessing the operating system
(for instance, to read and write files), formatted input and output, memory al-
location, string manipulation, and the like. A collection of standard headers
provides uniform access to declarations of functions and data types. Programs
that use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the “standard I/O library”
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called ex-
plicitly, so they can be avoided if they are not needed. Most can be written
in C, and except for the operating system details they conceal, are themselves
portable.

Although C matches the capabilities of many computers, it is independent
of any particular machine architecture. With a little care it is easy to write
portable programs, that is, programs that can be run without change on a vari-
ety of hardware. The standard makes portability issues explicit, and prescribes
a set of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated,
and the standard now requires the proper declarations and explicit conversions
that had already been enforced by good compilers. The new function declara-
tions are another step in this direction. Compilers will warn of most type errors,
and there is no automatic conversion of incompatible data types. Nevertheless,
C retains the basic philosophy that programmers know what they are doing; it
only requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless,
C has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central
part of C. The purpose is to get the reader started as quickly as possible, since
we believe strongly that the way to learn a new language is to write programs
in it. The tutorial does assume a working knowledge of the basic elements of
programming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.
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Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with
the basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure—external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common inter-
face to the operating system. This library is defined by the ANSI standard and
1s meant to be supported on all machines that support C, so programs that use
it for input, output, and other operating system access can be moved from one
system to another without change.

Chapter 8 describes an interface between C programs and the UNIX oper-
ating system, concentrating on input/output, the file system, and storage allo-
cation. Although some of this chapter is specific to UNIX systems, program-
mers who use other systems should still find useful material here, including
some insight into how one version of the standard library is implemented, and
suggestions on portability.

Appendix A contains a language reference manual. The official statement
of the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one’s
own compiler remain the final authorities on the language.



CHAPTER 1: A Tutorial Introduction

Let us begin with a quick introduction to C. Our aim is to show the essential
elements of the language in real programs, but without getting bogged down in
details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C’s rich set
of operators, several control-flow statements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story
on any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and elegant as they might be. We have tried
to minimize these effects, but be warned. Another drawback is that later chap-
ters will necessarily repeat some of this chapter. We hope that the repetition
will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from
the material in this chapter to their own programming needs. Beginners should
supplement it by writing small, similar programs of their own. Both groups
can use it as a framework on which to hang the more detailed descriptions that
begin in Chapter 2.

1.1 Getting Started

The only way to learn a new programming language is by writing programs
in it. The first program to write is the same for all languages:

Print the words
hello,world

This is the big hurdle; to leap over it you have to be able to create the program
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text somewhere, compile it successfully, load it, run it, and find out where your
output went. With these mechanical details mastered, everything else is com-
paratively easy.

In C, the program to print “hello, world” is

#include <stdio.h>

main()

{
}

Just how to run this program depends on the system you are using. As a
specific example, on the UNIX operating system you must create the program
in a file whose name ends in “.c”, such as hello.c, then compile it with the
command

printf("hello, world\n");

cc hello.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable file
called a.out. If you run a.out by typing the command

a.out
it will print
hello, world

On other systems, the rules will be different; check with a local expert.

Now for some explanations about the program itself. A C program, what-
ever its size, consists of functions and variables. A function contains statements
that specify the computing operations to be done, and variables store values
used during the computation. C functions are like the subroutines and func-
tions of Fortran or the procedures and functions of Pascal. Our example is a
function named main. Normally you are at liberty to give functions whatever
names you like, but “main” is special — your program begins executing at the be-
ginning of main. This means that every program must have a main somewhere.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

tells the compiler to include information about the standard input/output li-
brary; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling
function to provide a list of values, called arguments, to the function it calls.
The parentheses after the function name surround the argument list. In this
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#include <stdio.h> include information about standard library

main() define a function named main
that receives no argument values

{ statements of main are enclosed in braces

printf("hello, world\n"); main calls library function printf
to print this sequence of characters;
\n represents the newline character

The first C program

example, main is defined to be a function that expects no arguments, which is
indicated by the empty list ().

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of argu-
ments, so this calls the function printf with the argument "hello, world\n".
printf is a library function that prints output, in this case the string of char-
acters between the quotes.

A sequence of characters in double quotes, like "hello, world\n", is
called a character string or string constant. For the moment our only use of
character strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character, which
when printed advances the output to the left margin on the next line. If you
leave out the \n (a worthwhile experiment), you will find that there is no line
advance after the output is printed. You must use \n to include a newline char-
acter in the printf argument; if you try something like

printf("hello, world
");

the C compiler will produce an error message.

printf never supplies a newline automatically, so several calls may be used
to build up an output line in stages. Our first program could just as well have
been written
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#include <stdio.h>

main()

{ printf("hello, ");
printf("world");
printf("\n");
}
to produce identical output.
Notice that \n represents only a single character. An escape sequence like
\n provides a general and extensible mechanism for representing hard-to-type
or invisible characters. Among the others that C provides are \t for tab, \b
for backspace, \" for the double quote, and \\ for the backslash itself. There
1s a complete list in Section 2.3.

Exercise 1-1. Run the “hello, world” program on your system. Experiment
with leaving out parts of the program, to see what error messages you get. [J

Exercise 1-2. Experiment to find out what happens when printf’s argument
string contains \ ¢, where ¢ is some character not listed above. []

1.2 Variables and Arithmetic Expressions

The next program uses the formula °C = (5/9)(°F-32) to print the following
table of Fahrenheit temperatures and their centigrade or Celsius equivalents:

0 -17
20 -6
40 4

60 15
80 26
100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named
main. It is longer than the one that printed “hello, world”, but not com-
plicated. It introduces several new ideas, including comments, declarations,
variables, arithmetic expressions, loops, and formatted output.
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#include <stdio.h>

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */
main()
{
int fahr, celsius;
int lower, upper, step;
lower = 0; /* lower limit of temperature table */
upper = 300; /* upper limit */
step = 20; /* step size */
fahr = lower;
while (fahr <= upper) {
celsius = 5 * (fahr-32) / 9;
printf("%d\t%d\n", fahr, celsius);
fahr = fahr + step;
}
)

The two lines

/* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 */

are a comment, which in this case explains briefly what the program does. Any
characters between /* and */ are ignored by the compiler; they may be used
freely to make a program easier to understand. Comments may appear any-
where a blank or tab or newline can.

In C, all variables must be declared before they are used, usually at the
beginning of the function before any executable statements. A declaration an-
nounces the properties of variables; it consists of a type name and a list of
variables, such as

int fahr, celsius;
int lower, upper, step;

The type int means that the variables listed are integers, by contrast with float,
which means floating point, i.e., numbers that may have a fractional part. The
range of both int and float depends on the machine you are using; 16-bit
ints, which lie between —32768 and +32767, are common, as are 32-bit ints.
A float number is typically a 32-bit quantity, with at least six significant digits
and magnitude generally between about 1073% and 10738,

C provides several other basic data types besides int and float, including:

char character - a single byte
short  short integer
long long integer

double double-precision floating point
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The sizes of these objects are also machine-dependent. There are also arrays,
structures and unions of these basic types, pointers to them, and functions that
return them, all of which we will meet in due course.

Computation in the temperature conversion program begins with the as-
signment statements

lower = 0;
upper = 300;
step 20;

fahr = lower;

which set the variables to their initial values. Individual statements are termi-
nated by semicolons.

Each line of the table is computed the same way, so we use a loop that
repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {

}

The while loop operates as follows: The condition in parentheses is tested. If
it is true (fahr is less than or equal to upper), the body of the loop (the three
statements enclosed in braces) is executed. Then the condition is re-tested, and
if true, the body is executed again. When the test becomes false (fahr exceeds
upper) the loop ends, and execution continues at the statement that follows the
loop. There are no further statements in this program, so it terminates.

The body of a while can be one or more statements enclosed in braces, as
in the temperature converter, or a single statement without braces, as in

while (i < j)
i=2=*1i;

In either case, we will always indent the statements controlled by the while by
one tab stop (which we have shown as four spaces) so you can see at a glance
which statements are inside the loop. The indentation emphasizes the logical
structure of the program. Although C compilers do not care about how a pro-
gram looks, proper indentation and spacing are critical in making programs
easy for people to read. We recommend writing only one statement per line,
and using blanks around operators to clarify grouping. The position of braces
1s less important, although people hold passionate beliefs. We have chosen one
of several popular styles. Pick a style that suits you, then use it consistently.

Most of the work gets done in the body of the loop. The Celsius tempera-
ture is computed and assigned to the variable celsius by the statement

celsius = 5 * (fahr-32) / 9;

The reason for multiplying by 5 and then dividing by 9 instead of just multiply-
ing by 5/9 is that in C, as in many other languages, integer division truncates:
any fractional part is discarded. Since 5 and 9 are integers, 5/9 would be trun-
cated to zero and so all the Celsius temperatures would be reported as zero.
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This example also shows a bit more of how printf works. printf is a
general-purpose output formatting function, which we will describe in detail
in Chapter 7. Its first argument is a string of characters to be printed, with
each % indicating where one of the other (second, third, ...) arguments is to be
substituted, and in what form it is to be printed. For instance, %d specifies an
integer argument, so the statement

printf("%d\t%d\n", fahr, celsius);

causes the values of the two integers fahr and celsius to be printed, with a
tab (\t) between them.

Each % construction in the first argument of printf is paired with the corre-
sponding second argument, third argument, etc.; they must match up properly
by number and type, or you’ll get wrong answers.

By the way, printf is not part of the C language; there is no input or output
defined in C itself. printf is just a useful function from the standard library of
functions that are normally accessible to C programs. The behavior of printf
1s defined in the ANSI standard, however, so its properties should be the same
with any compiler and library that conforms to the standard.

In order to concentrate on C itself, we won’t talk much about input and out-
put until Chapter 7. In particular, we will defer formatted input until then. If
you have to input numbers, read the discussion of the function scanf in Section
7.4. scanf is like print£, except that it reads input instead of writing output.

There are a couple of problems with the temperature conversion program.
The simpler one is that the output isn’t very pretty because the numbers are
not right-justified. That’s easy to fix; if we augment each %d in the printf
statement with a width, the numbers printed will be right-justified in their fields.
For instance, we might say

printf("%3d %6d\n", fahr, celsius);

to print the first number of each line in a field three digits wide, and the second
in a field six digits wide, like this:

0 -17
20 -6
40 4
60 15
80 26

100 37

The more serious problem is that because we have used integer arithmetic,
the Celsius temperatures are not very accurate; for instance, 0°F is actually
about —17.8°C, not —17. To get more accurate answers, we should use
floating-point arithmetic instead of integer. This requires some changes in the
program. Here is a second version:
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#include <stdio.h>

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300; floating-point version */
main()
{
float fahr, celsius;
int lower, upper, step;
lower = 0; /* lower limit of temperature table */
upper = 300; /* upper limit */
step = 20; /* step size */
fahr = lower;
while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("%3.0f %6.1f\n", fahr, celsius);
fahr = fahr + step;
}
)

This is much the same as before, except that fahr and celsius are declared
to be float, and the formula for conversion is written in a more natural way.
We were unable to use 5/9 in the previous version because integer division
would truncate it to zero. A decimal point in a constant indicates that it is
floating point, however, so 5.0/9.0 is not truncated because it is the ratio of
two floating-point values.

If an arithmetic operator has integer operands, an integer operation is per-
formed. If an arithmetic operator has one floating-point operand and one inte-
ger operand, however, the integer will be converted to floating point before the
operation is done. If we had written fahr - 32, the 32 would be automatically
converted to floating point. Nevertheless, writing floating-point constants with
explicit decimal points even when they have integral values emphasizes their
floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in
Chapter 2. For now, notice that the assignment

fahr = lower;

and the test
while (fahr <= upper)

also work in the natural way — the int is converted to £loat before the opera-
tion is done.

The printf conversion specification %3.0f says that a floating-point num-
ber (here fahr) is to be printed at least three characters wide, with no decimal
point and no fraction digits. %6.1f describes another number (celsius) that
is to be printed at least six characters wide, with 1 digit after the decimal point.
The output looks like this:
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0 -17.8
20 -6.7
40 4.4

Width and precision may be omitted from a specification: %6f says that the
number is to be at least six characters wide; %. 2 £ specifies two characters after
the decimal point, but the width is not constrained; and %£ merely says to print
the number as floating point.

%d print as decimal integer

%6d print as decimal integer, at least 6 characters wide
%f print as floating point

%6 £ print as floating point, at least 6 characters wide

o

.2f  print as floating point, 2 characters after decimal point
6.2f print as floating point, at least 6 wide and 2 after decimal

P

Among others, printf also recognizes %o for octal, %x for hexadecimal, %c for
character, %s for character string, and %% for % itself.

Exercise 1-3. Modify the temperature conversion program to print a heading
above the table. [

Exercise 1-4. Write a program to print the corresponding Celsius to Fahrenheit
table. [J

1.3 The For Statement

There are plenty of different ways to write a program for a particular task.
Let’s try a variation on the temperature converter.

#include <stdio.h>

/* print Fahrenheit-Celsius table */

main()
{
int fahr;
for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
¥

This produces the same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, and we
have made it an int. The lower and upper limits and the step size appear only
as constants in the for statement, itself a new construction, and the expression
that computes the Celsius temperature now appears as the third argument of
printf instead of as a separate assignment statement.
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This last change is an instance of a general rule—in any context where it
is permissible to use the value of a variable of some type, you can use a more
complicated expression of that type. Since the third argument of printf must
be a floating-point value to match the %6 . 1£, any floating-point expression can
occur there.

The for statement is a loop, a generalization of the while. If you compare
it to the earlier while, its operation should be clear. Within the parentheses,
there are three parts, separated by semicolons. The first part, the initialization

fahr = 0

1s done once, before the loop proper is entered. The second part is the test or
condition that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single
printf) is executed. Then the increment step

fahr = fahr + 20

1s executed, and the condition re-evaluated. The loop terminates if the condi-
tion has become false. As with the while, the body of the loop can be a single
statement, or a group of statements enclosed in braces. The initialization, con-
dition, and increment can be any expressions.

The choice between while and for is arbitrary, based on which seems
clearer. The for is usually appropriate for loops in which the initialization and
increment are single statements and logically related, since it is more compact
than while and it keeps the loop control statements together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in
reverse order, that is, from 300 degrees to 0. [

1.4 Symbolic Constants

A final observation before we leave temperature conversion forever. It’s
bad practice to bury “magic numbers” like 300 and 20 in a program; they con-
vey little information to someone who might have to read the program later,
and they are hard to change in a systematic way. One way to deal with magic
numbers is to give them meaningful names. A #define line defines a symbolic
name or symbolic constant to be a particular string of characters:

#define name replacement text

Thereafter, any occurrence of name (not in quotes and not part of another
name) will be replaced by the corresponding replacement text. The name has
the same form as a variable name: a sequence of letters and digits that begins
with a letter. The replacement text can be any sequence of characters; it is not
limited to numbers.
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#include <stdio.h>

#define LOWER O /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP 20 /* step size */

/* print Fahrenheit-Celsius table */
main()

{

int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
}

The quantities LOWER, UPPER and STEP are symbolic constants, not variables, so
they do not appear in declarations. Symbolic constant names are convention-
ally written in upper case so they can be readily distinguished from lower case
variable names. Notice that there is no semicolon at the end of a #define line.

1.5 Character Input and Output

We are now going to consider a family of related programs for processing
character data. You will find that many programs are just expanded versions
of the prototypes that we discuss here.

The model of input and output supported by the standard library is very
simple. Text input or output, regardless of where it originates or where it goes
to, is dealt with as streams of characters. A text stream is a sequence of char-
acters divided into lines; each line consists of zero or more characters followed
by a newline character. It is the responsibility of the library to make each input
or output stream conform to this model; the C programmer using the library
need not worry about how lines are represented outside the program.

The standard library provides several functions for reading or writing one
character at a time, of which getchar and putchar are the simplest. Each
time it is called, getchar reads the next input character from a text stream and
returns that as its value. That is, after

¢ = getchar();

the variable ¢ contains the next character of input. The characters normally
come from the keyboard; input from files is discussed in Chapter 7.
The function putchar prints a character each time it is called:

putchar(c);
prints the contents of the integer variable c as a character, usually on the screen.

Calls to putchar and printf may be interleaved; the output will appear in the
order in which the calls are made.
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1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful
code without knowing anything more about input and output. The simplest
example is a program that copies its input to its output one character at a time:

read a character

while (character is not end-of-file indicator)
output the character just read
read a character

Converting this into C gives

#include <stdio.h>

/* copy input to output; 1lst version */
main()

{

int c¢;

¢ = getchar();
while (¢ != EOF) {
putchar(c);
c = getchar();

}

The relational operator != means “not equal to.”

What appears to be a character on the keyboard or screen is of course,
like everything else, stored internally just as a bit pattern. The type char is
specifically meant for storing such character data, but any integer type can be
used. We used int for a subtle but important reason.

The problem is distinguishing the end of the input from valid data. The
solution is that getchar returns a distinctive value when there is no more input,
a value that cannot be confused with any real character. This value is called EoF,
for “end of file.” We must declare ¢ to be a type big enough to hold any value
that getchar returns. We can’t use char since ¢ must be big enough to hold
EOF in addition to any possible char. Therefore we use int.

EOF is an integer defined in <stdio.h>, but the specific numeric value
doesn’t matter as long as it is not the same as any char value. By using the
symbolic constant, we are assured that nothing in the program depends on the
specific numeric value.

The program for copying would be written more concisely by experienced
C programmers. In C, any assignment, such as

c = getchar();
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is an expression and has a value, which is the value of the left hand side after
the assignment. This means that an assignment can appear as part of a larger
expression. If the assignment of a character to ¢ is put inside the test part of a
while loop, the copy program can be written this way:

#include <stdio.h>

/* copy input to output; 2nd version */

main()
{
int c¢;
while ((c¢ = getchar()) != EOF)
putchar(c);
}

The while gets a character, assigns it to ¢, and then tests whether the character
was the end-of-file signal. If it was not, the body of the while is executed,
printing the character. The while then repeats. When the end of the input is
finally reached, the while terminates and so does main.

This version centralizes the input-there is now only one reference to
getchar—and shrinks the program. The resulting program is more compact,
and, once the idiom is mastered, easier to read. You’ll see this style often.
(It’s possible to get carried away and create impenetrable code, however, a
tendency that we will try to curb.)

The parentheses around the assignment within the condition are necessary.
The precedence of 1= is higher than that of =, which means that in the absence
of parentheses the relational test : = would be done before the assignment =. So
the statement

¢ = getchar() != EOF
is equivalent to
c = (getchar() != EOF)

This has the undesired effect of setting ¢ to 0 or 1, depending on whether
or not the call of getchar encountered end of file. (More on this in Chapter 2.)

Exercise 1-6. Verify that the expression getchar() != EoFisQor 1. [J

Exercise 1-7. Write a program to print the value of or. [

1.5.2 Character Counting

The next program counts characters; it is similar to the copy program.

#include <stdio.h>
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/* count characters in input; 1st version */

main()
{
long nc;
nc = 0;
while (getchar() != EOF)

++nc;
printf("%1d\n", nc);
}
The statement
++nc;

presents a new operator, ++, which means increment by one. You could instead
write nc = nc + 1 but++nc is more concise and often more efficient. Thereis a
corresponding operator -- to decrement by 1. The operators ++ and -- can be
either prefix operators (++nc) or postfix (nc++); these two forms have different
values in expressions, as will be shown in Chapter 2, but ++nc and nc++ both
increment nc. For the moment we will stick to the prefix form.

The character counting program accumulates its count in a long variable
instead of an int. long integers are at least 32 bits. Although on some ma-
chines, int and long are the same size, on others an int is 16 bits, with a maxi-
mum value of 32767, and it would take relatively little input to overflow an int
counter. The conversion specification %1d tells printf that the corresponding
argument is a long integer.

It may be possible to cope with even bigger numbers by using a double
(double precision float). We will also use a for statement instead of a while,
to illustrate another way to write the loop.

#include <stdio.h>

/* count characters in input; 2nd version */
main()

{

double nc;
for (nc = 0; getchar() != EOF; ++nc)

prinéf("%.of\n", nc);
}
printf uses %f for both float and double; %.0f suppresses printing of the
decimal point and the fraction part, which is zero.

The body of this for loop is empty, because all of the work is done in the
test and increment parts. But the grammatical rules of C require that a for
statement have a body. The isolated semicolon, called a null statement, is there
to satisfy that requirement. We put it on a separate line to make it visible.

Before we leave the character counting program, observe that if the in-
put contains no characters, the while or for test fails on the very first call
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to getchar, and the program produces zero, the right answer. This is impor-
tant. One of the nice things about while and for is that they test at the top of
the loop, before proceeding with the body. If there is nothing to do, nothing is
done, even if that means never going through the loop body. Programs should
act intelligently when given zero-length input. The while and for statements
help ensure that programs do reasonable things with boundary conditions.

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard
library ensures that an input text stream appears as a sequence of lines, each
terminated by a newline. Hence, counting lines is just counting newlines:

#include <stdio.h>

/* count lines in input */

main()
{
int ¢, nl;
nl = 0;
while ((¢ = getchar()) != EOF)
if (¢ == '"\n")

++nl;
printf("%d\n", nl);
}

The body of the while now consists of an if, which in turn controls the
increment ++nl. The if statement tests the parenthesized condition, and if the
condition is true, executes the statement (or group of statements in braces) that
follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for “is equal to” (like Pascal’s
single = or Fortran’s .EQ.). This symbol is used to distinguish the equality test
from the single = that C uses for assignment. A word of caution: newcomers
to C occasionally write = when they mean ==. As we will see in Chapter 2, the
result is usually a legal expression, so you will get no warning.

A character written between single quotes represents an integer value equal
to the numerical value of the character in the machine’s character set. This is
called a character constant, although it is just another way to write a small
integer. So, for example, 'a' is a character constant; in the ASCII character
set its value is 65, the internal representation of the character a. Of course 'a’
is to be preferred over 65: its meaning is obvious, and it is independent of a
particular character set.

The escape sequences used in string constants are also legal in character
constants, so '\n' stands for the value of the newline character, which is 10
in ASCII. You should note carefully that '\n' is a single character, and in
expressions is just an integer; on the other hand, "\n" is a string constant that
happens to contain only one character. The topic of strings versus characters
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1s discussed further in Chapter 2.
Exercise 1-8. Write a program to count blanks, tabs, and newlines. []

Exercise 1-9. Write a program to copy its input to its output, replacing each
string of one or more blanks by a single blank. [

Exercise 1-10. Write a program to copy its input to its output, replacing each
tab by \t, each backspace by \b, and each backslash by \\. This makes tabs
and backspaces visible in an unambiguous way. [

1.5.4 Word Counting

The fourth in our series of useful programs counts lines, words, and char-
acters, with the loose definition that a word is any sequence of characters that
does not contain a blank, tab or newline. This is a bare-bones version of the
UNIX program wec.

#include <stdio.h>

#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

/* count lines, words, and characters in input */
main()

{

int ¢, nl, nw, nc, state;

state = OUT;

nl = nw = nc = 0;
while ((c¢ = getchar()) != EOF) {
++nc;
if (¢ == '"\n')
++nl;
if (¢ == " " || ¢ == '"\n' || ¢ == "\t")
state = OUT;
else if (state == OUT) {
state = IN;
++nw;
¥
}

printf("%d %d %d\n", nl, nw, nc);

}

Every time the program encounters the first character of a word, it counts
one more word. The variable state records whether the program is currently in
a word or not; initially it is “not in a word,” which is assigned the value ouT. We
prefer the symbolic constants 1N and out to the literal values 1 and 0 because
they make the program more readable. In a program as tiny as this, it makes
little difference, but in larger programs, the increase in clarity is well worth the
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modest extra effort to write it this way from the beginning. You’ll also find that
it’s easier to make extensive changes in programs where magic numbers appear
only as symbolic constants.

The line

nl = nw = nc = 0

sets all three variables to zero. This is not a special case, but a consequence
of the fact that an assignment is an expression with a value and assignments
associate from right to left. It’s as if we had written

nl = (nw = (nc = 0));
The operator | | means OR, so the line
if (c == ' ' || ¢ == "\n' || ¢ = "\t')

says “if c is a blank or ¢ is a newline or c is a tab”. (Recall that the escape
sequence \t is a visible representation of the tab character.) There is a corre-
sponding operator && for AND; its precedence is just higher than | |. Expres-
sions connected by && or || are evaluated left to right, and it is guaranteed
that evaluation will stop as soon as the truth or falsehood is known. If c is
a blank, there is no need to test whether it is a newline or tab, so these tests
are not made. This isn’t particularly important here, but is significant in more
complicated situations, as we will soon see.

The example also shows an else, which specifies an alternative action if
the condition part of an if statement is false. The general form is

if (expression)
Statement;

else
Statement,

One and only one of the two statements associated with an if-else is
performed. If the expression is true, statement; is executed; if not, statement,
is executed. Each statement can be a single statement or several in braces. In
the word count program, the one after the else is an if that controls two
statements in braces.

Exercise 1-11. How would you test the word count program? What kinds of
input are most likely to uncover bugs if there are any? [

Exercise 1-12. Write a program that prints its input one word per line. [J

1.6 Arrays

Let us write a program to count the number of occurrences of each digit, of
white space characters (blank, tab, newline), and of all other characters. This
is artificial, but it permits us to illustrate several aspects of C in one program.
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There are twelve categories of input, so it is convenient to use an array
to hold the number of occurrences of each digit, rather than ten individual
variables. Here is one version of the program:

#include <stdio.h>

/* count digits, white space, others */
main()

{
int ¢, i, nwhite, nother;
int ndigit[10];

nwhite = nother = 0;
for (i = 0; i < 10; ++1i)
ndigit[i] = 0;

while ((c¢ = getchar()) != EOF)
if (¢ >= '0'" && ¢ <= '9")
++ndigit[c-'0"'];
else if (¢ == " ' || ¢ == "\n' || ¢ == "\t'")
++nwhite;
else
++nother;

printf("digits =");
for (i = 0; i < 10; ++1i)
printf(" %d", ndigit[i]);
printf(", white space = %d, other = %d\n",
nwhite, nother);

}
The output of this program on itself is
digits = 9 3 0 0 0 0 0 0 0 1, white space = 123, other = 345
The declaration
int ndigit[10];
declares ndigit to be an array of 10 integers. Array subscripts always start at
zero in C, so the elements are ndigit[0], ndigit[1], ..., ndigit[9]. This is
reflected in the for loops that initialize and print the array.
A subscript can be any integer expression, which includes integer variables
like i, and integer constants.

This particular program relies on the properties of the character represen-
tation of the digits. For example, the test

if (¢ >= '0' && c <= '9')

determines whether the character in c is a digit. If it is, the numeric value of
that digit is

c - '0'
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This works only if o', "1, ..., 9" have consecutive increasing values. Fortu-
nately, this is true for all character sets.

By definition, chars are just small integers, so char variables and constants
are identical to ints in arithmetic expressions. This is natural and convenient;
for example, c-' 0" is an integer expression with a value between 0 and 9 corre-
sponding to the character '0' to '9' stored in ¢, and is thus a valid subscript
for the array ndigit.

The decision as to whether a character is a digit, white space, or something
else is made with the sequence

if (¢ >= '0' && ¢ <= '9")
++ndigit[c-'0"'];

else if (¢ == " ' || ¢ == '"\n' || ¢ == "\t")
++nwhite;

else
++nother;

The pattern

if (condition;)
Statement;

else if (condition,)
Statement,

else
statement,

occurs frequently in programs as a way to express a multi-way decision. The
conditions are evaluated in order from the top until some condition is satisfied; at
that point the corresponding statement part is executed, and the entire construc-
tion is finished. (Any statement can be several statements enclosed in braces.)
If none of the conditions is satisfied, the statement after the final else is exe-
cuted if it is present. If the final else and statement are omitted, as in the word
count program, no action takes place. There can be any number of

else if (condition)
Statement

groups between the initial if and the final else.

As a matter of style, it is advisable to format this construction as we have
shown; if each if were indented past the previous else, a long sequence of
decisions would march off the right side of the page.
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The switch statement, to be discussed in Chapter 3, provides another way
to write a multi-way branch that is particularly suitable when the condition is
whether some integer or character expression matches one of a set of constants.
For contrast, we will present a switch version of this program in Section 3.4.

Exercise 1-13. Write a program to print a histogram of the lengths of words in
its input. It is easy to draw the histogram with the bars horizontal; a vertical
orientation is more challenging. [

Exercise 1-14. Write a program to print a histogram of the frequencies of dif-
ferent characters in its input. [

1.7 Functions

In C, a function is equivalent to a subroutine or function in Fortran, or a
procedure or function in Pascal. A function provides a convenient way to en-
capsulate some computation, which can then be used without worrying about
its implementation. With properly designed functions, it is possible to ignore
how a job is done; knowing what is done is sufficient. C makes the use of func-
tions easy, convenient and efficient; you will often see a short function defined
and called only once, just because it clarifies some piece of code.

So far we have used only functions like printf, getchar, and putchar that
have been provided for us; now it’s time to write a few of our own. Since C has
no exponentiation operator like the ** of Fortran, let us illustrate the mechanics
of function definition by writing a function power (m, n) to raise an integer m to
a positive integer power n. That is, the value of power(2,5) is 32. This function
1s not a practical exponentiation routine, since it handles only positive powers
of small integers, but it’s good enough for illustration. (The standard library
contains a function pow(x,y) that computes x’.)

Here is the function power and a main program to exercise it, SO you can
see the whole structure at once.

#include <stdio.h>
int power(int m, int n);

/* test power function */
main()

{

int 1i;

for (i = 0; i < 10; ++i)
printf("%d %d %d\n", i, power(2,i), power(-3,i));
return O;
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/* power: raise base to n-th power; n >= 0 */
int power(int base, int n)

{
int i, p;
p = 1;
for (i = 1; i <= n; ++1i)
p = p * base;
return p;
}

A function definition has this form:
return-type function-name(parameter declarations, if any)
{
declarations
statements
}
Function definitions can appear in any order, and in one source file or several,
although no function can be split between files. If the source program appears
in several files, you may have to say more to compile and load it than if it all
appears in one, but that is an operating system matter, not a language attribute.
For the moment, we will assume that both functions are in the same file, so
whatever you have learned about running C programs will still work.
The function power is called twice by main, in the line

printf("%d %d %d\n", i, power(2,i), power(-3,i));

Each call passes two arguments to power, which each time returns an integer
to be formatted and printed. In an expression, power (2, 1) is an integer just as
2 and i are. (Not all functions produce an integer value; we will take this up in
Chapter 4.)

The first line of power itself,
int power(int base, int n)

declares the parameter types and names, and the type of the result that the func-
tion returns. The names used by power for its parameters are local to power,
and are not visible to any other function: other routines can use the same names
without conflict. This is also true of the variables i and p: the i in power is un-
related to the i in main.

We will generally use parameter for a variable named in the parenthesized
list in a function definition, and argument for the value used in a call of the
function. The terms formal argument and actual argument are sometimes used
for the same distinction.

The value that power computes is returned to main by the return statement.
Any expression may follow return:

return expression;
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A function need not return a value; a return statement with no expression
causes control, but no useful value, to be returned to the caller, as does “falling
off the end” of a function by reaching the terminating right brace. And the
calling function can ignore a value returned by a function.

You may have noticed that there is a return statement at the end of main.
Since main is a function like any other, it may return a value to its caller, which
is in effect the environment in which the program was executed. Typically, a re-
turn value of zero implies normal termination; non-zero values signal unusual
or erroneous termination conditions. In the interests of simplicity, we have
omitted return statements from our main functions up to this point, but we
will include them hereafter, as a reminder that programs should return status
to their environment.

The declaration

int power(int base, int n);

just before main says that power is a function that expects two int arguments
and returns an int. This declaration, which is called a function prototype, has
to agree with the definition and uses of power. It is an error if the definition of
a function or any uses of it do not agree with its prototype.

Parameter names need not agree. Indeed, parameter names are optional in
a function prototype, so for the prototype we could have written

int power(int, int);

Well-chosen names are good documentation, however, so we will often use
them.

A note of history: The biggest change between ANSI C and earlier versions
is how functions are declared and defined. In the original definition of C, the
power function would have been written like this:

/* power: raise base to n-th power; n >= 0 */
/* (old-style version) */
power (base, n)

int base, n;

{
int i, p;
p=1;
for (i = 1; i <= n; ++1i)
p = p * base;
return p;
}

The parameters are named between the parentheses, and their types are de-
clared before the opening left brace; undeclared parameters are taken as int.
(The body of the function is the same as before.)

The declaration of power at the beginning of the program would have
looked like this:
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int power();

No parameter list was permitted, so the compiler could not readily check that
power was being called correctly. Indeed, since by default power would have
been assumed to return an int, the entire declaration might well have been
omitted.

The new syntax of function prototypes makes it much easier for a compiler
to detect errors in the number of arguments or their types. The old style
of declaration and definition still works in ANSI C, at least for a transition
period, but we strongly recommend that you use the new form when you have
a compiler that supports it.

Exercise 1-15. Rewrite the temperature conversion program of Section 1.2 to
use a function for conversion. [

1.8 Arguments — Call by Value

One aspect of C functions may be unfamiliar to programmers who are used
to some other languages, particularly Fortran. In C, all function arguments are
passed “by value.” This means that the called function is given the values of
its arguments in temporary variables rather than the originals. This leads to
some different properties than are seen with “call by reference” languages like
Fortran or with var parameters in Pascal, in which the called routine has access
to the original argument, not a local copy.

The main distinction is that in C the called function cannot directly alter a
variable in the calling function; it can only alter its private, temporary copy.

Call by value 1s an asset, however, not a liability. It usually leads to more
compact programs with fewer extraneous variables, because parameters can
be treated as conveniently initialized local variables in the called routine. For
example, here is a version of power that makes use of this property.

/* power: raise base to n-th power; n>=0; version 2 */
int power(int base, int n)

{
int p;
for (p = 1; n > 0; --n)
P = p * base;
return p;
}

The parameter n is used as a temporary variable, and is counted down (a for
loop that runs backwards) until it becomes zero; there is no longer a need for
the variable i. Whatever is done to n inside power has no effect on the argument
that power was originally called with.



28 CHAPTER 1. A TUTORIAL INTRODUCTION

When necessary, it is possible to arrange for a function to modify a variable
in a calling routine. The caller must provide the address of the variable to be
set (technically a pointer to the variable), and the called function must declare
the parameter to be a pointer and access the variable indirectly through it. We
will cover pointers in Chapter 5.

The story is different for arrays. When the name of an array is used as an
argument, the value passed to the function is the location or address of the
beginning of the array—there is no copying of array elements. By subscripting
this value, the function can access and alter any element of the array. This is
the topic of the next section.

1.9 Character Arrays

The most common type of array in C is the array of characters. To illus-
trate the use of character arrays and functions to manipulate them, let’s write
a program that reads a set of text lines and prints the longest. The outline is
simple enough:

while (there’s another line)

if (it’s longer than the previous longest)
save it

save its length
print longest line

This outline makes it clear that the program divides naturally into pieces. One
piece gets a new line, another tests it, another saves it, and the rest controls the
process.

Since things divide so nicely, it would be well to write them that way too.
Accordingly, let us first write a separate function getline to fetch the next line
of input. We will try to make the function useful in other contexts. At the
minimum, getline has to return a signal about possible end of file; a more
useful design would be to return the length of the line, or zero if end of file is
encountered. Zero is an acceptable end-of-file return because it is never a valid
line length. Every text line has at least one character; even a line containing
only a newline has length 1.

When we find a line that is longer than the previous longest line, it must be
saved somewhere. This suggests a second function, copy, to copy the new line
to a safe place.

Finally, we need a main program to control getline and copy. Here is the
result.
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#include <stdio.h>
#define MAXLINE 1000 /* maximum input line size */

int getline(char line[], int maxline);
void copy(char to[], char from[]);

/* print longest input line */

main()

{
int len; /* current line length */
int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */

char longest[MAXLINE]; /* longest line saved here */

max = 0;

while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {

max len;
copy(longest, line);
}
if (max > 0) /* there was a line */

printf("%s", longest);
return 0;

}

/* getline: read a line into s, return length */
int getline(char s[], int 1lim)

{
int ¢, 1i;
for (i=0; i<lim-1 && (c=getchar())!=EOF && c!='\n"';
s[i] = c;
if (¢ == '\n") {
s[i] = c;
++1i;
¥
s[i] = "\0';
return i;
}

++1)

/* copy: copy 'from' into 'to'; assume to is big enough */

void copy(char to[], char from[])
{

int i;
i=0;

while ((to[i] = from[i]) !'= '\0")
++1i;

29
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The functions getline and copy are declared at the beginning of the pro-
gram, which we assume is contained in one file.

main and getline communicate through a pair of arguments and a re-
turned value. In getline, the arguments are declared by the line

int getline(char s[], int 1lim);

which specifies that the first argument, s, is an array, and the second, 1im, is
an integer. The purpose of supplying the size of an array in a declaration is to
set aside storage. The length of the array s is not necessary in getline since its
size 1s set in main. getline uses return to send a value back to the caller, just
as the function power did. This line also declares that getline returns an int;
since int is the default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for
their effect and return no value. The return type of copy is void, which states
explicitly that no value is returned.

getline puts the character '\o' (the null character, whose value is zero) at
the end of the array it is creating, to mark the end of the string of characters.
This convention is also used by the C language: when a string constant like

"hello\n"

appears in a C program, it is stored as an array of characters containing the
characters of the string and terminated with a *\ o' to mark the end.

[ B [ef[2]2]ofw[\o]

The %s format specification in printf expects the corresponding argument to
be a string represented in this form. copy also relies on the fact that its input
argument is terminated by '\o', and it copies this character into the output
argument. (All of this implies that *\o' is not a part of normal text.)

It is worth mentioning in passing that even a program as small as this one
presents some sticky design problems. For example, what should main do if it
encounters a line which is bigger than its limit? getline works safely, in that
it stops collecting when the array is full, even if no newline has been seen. By
testing the length and the last character returned, main can determine whether
the line was too long, and then cope as it wishes. In the interests of brevity, we
have ignored the issue.

There is no way for a user of getline to know in advance how long an
input line might be, so getline checks for overflow. On the other hand, the
user of copy already knows (or can find out) how big the strings are, so we
have chosen not to add error checking to it.

Exercise 1-16. Revise the main routine of the longest-line program so it
will correctly print the length of arbitrarily long input lines, and as much as
possible of the text. [J
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Exercise 1-17. Write a program to print all input lines that are longer than 80
characters. [

Exercise 1-18. Write a program to remove trailing blanks and tabs from each
line of input, and to delete entirely blank lines. [J

Exercise 1-19. Write a function reverse(s) that reverses the character string
s. Use it to write a program that reverses its input a line at a time. [

1.10 External Variables and Scope

The variables in main, such as line, longest, etc., are private or local to
main. Because they are declared within main, no other function can have direct
access to them. The same is true of the variables in other functions; for example,
the variable i in getline is unrelated to the i in copy. Each local variable in a
function comes into existence only when the function is called, and disappears
when the function is exited. This is why such variables are usually known as
automatic variables, following terminology in other languages. We will use the
term automatic henceforth to refer to these local variables. Chapter 4 discusses
the static storage class, in which local variables do retain their values between
calls.)

Because automatic variables come and go with function invocation, they
do not retain their values from one call to the next, and must be explicitly set
upon each entry. If they are not set, they will contain garbage.

As an alternative to automatic variables, it is possible to define variables
that are external to all functions, that is, variables that can be accessed by name
by any function. (This mechanism is rather like Fortran COMMON or Pas-
cal variables declared in the outermost block.) Because external variables are
globally accessible, they can be used instead of argument lists to communicate
data between functions. Furthermore, because external variables remain in ex-
istence permanently, rather than appearing and disappearing as functions are
called and exited, they retain their values even after the functions that set them
have returned.

An external variable must be defined, exactly once, outside of any function,;
this sets aside storage for it. The variable must also be declared in each function
that wants to access it; this states the type of the variable. The declaration may
be an explicit extern statement or may be implicit from context. To make the
discussion concrete, let us rewrite the longest-line program with 1ine, longest,
and max as external variables. This requires changing the calls, declarations,
and bodies of all three functions.
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#include <stdio.h>

#define MAXLINE 1000 /* maximum input line size */
int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */

char longest[MAXLINE]; /* longest line saved here */

int getline(void);
void copy(void);

/* print longest input line; specialized version */
main()

{
int len;
extern int max;
extern char longest[];
max = 0;
while ((len = getline()) > 0)
if (len > max) {
max = len;
copy();
}
if (max > 0) /* there was a line */
printf("%s", longest);
return O;
}

/* getline: specialized version */
int getline(void)
{

int ¢, 1i;

extern char line[];

for (i = 0; i < MAXLINE-1
&& (c=getchar()) != EOF && c != '"\n'; ++1i)
line[i] = c¢;
if (¢ == "\n"') {
line[i] = c;
++1;
}
line[i] = '\O';
return i;
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/* copy: specialized version */
void copy(void)

{
int i;
extern char line[], longest[];
i= 0;
while ((longest[i] = line[i]) != '\0')
++1;
}

The external variables in main, getline, and copy are defined by the first
lines of the example above, which state their type and cause storage to be al-
located for them. Syntactically, external definitions are just like definitions of
local variables, but since they occur outside of functions, the variables are ex-
ternal. Before a function can use an external variable, the name of the variable
must be made known to the function. One way to do this is to write an extern
declaration in the function; the declaration is the same as before except for the
added keyword extern.

In certain circumstances, the extern declaration can be omitted. If the
definition of an external variable occurs in the source file before its use in a
particular function, then there is no need for an extern declaration in the func-
tion. The extern declarations in main, getline and copy are thus redundant.
In fact, common practice is to place definitions of all external variables at the
beginning of the source file, and then omit all extern declarations.

If the program is in several source files, and a variable is defined in file/ and
used in file2 and file3, then extern declarations are needed in file2 and file3 to
connect the occurrences of the variable. The usual practice is to collect extern
declarations of variables and functions in a separate file, historically called a
header, that is included by #include at the front of each source file. The suffix
.h is conventional for header names. The functions of the standard library,
for example, are declared in headers like <stdio.h>. This topic is discussed at
length in Chapter 4, and the library itself in Chapter 7 and Appendix B.

Since the specialized versions of getline and copy have no arguments,
logic would suggest that their prototypes at the beginning of the file should
be getline() and copy(). But for compatibility with older C programs the
standard takes an empty list as an old-style declaration, and turns off all argu-
ment list checking; the word void must be used for an explicitly empty list. We
will discuss this further in Chapter 4.

You should note that we are using the words definition and declaration care-
fully when we refer to external variables in this section. “Definition” refers to
the place where the variable is created or assigned storage; “declaration” refers
to places where the nature of the variable is stated but no storage is allocated.

By the way, there is a tendency to make everything in sight an extern vari-
able because it appears to simplify communications—argument lists are short
and variables are always there when you want them. But external variables are



34 CHAPTER 1. A TUTORIAL INTRODUCTION

always there even when you don’t want them. Relying too heavily on external
variables is fraught with peril since it leads to programs whose data connections
are not at all obvious—variables can be changed in unexpected and even inad-
vertent ways, and the program is hard to modify. The second version of the
longest-line program is inferior to the first, partly for these reasons, and partly
because it destroys the generality of two useful functions by wiring into them
the names of the variables they manipulate.

At this point we have covered what might be called the conventional
core of C. With this handful of building blocks, it’s possible to write useful
programs of considerable size, and it would probably be a good idea if you
paused long enough to do so. These exercises suggest programs of somewhat
greater complexity than the ones earlier in this chapter.

Exercise 1-20. Write a program detab that replaces tabs in the input with
the proper number of blanks to space to the next tab stop. Assume a fixed
set of tab stops, say every n columns. Should » be a variable or a symbolic
parameter? [

Exercise 1-21. Write a program entab that replaces strings of blanks by the
minimum number of tabs and blanks to achieve the same spacing. Use the
same tab stops as for detab. When either a tab or a single blank would suffice
to reach a tab stop, which should be given preference? [

Exercise 1-22. Write a program to “fold” long input lines into two or more
shorter lines after the last non-blank character that occurs before the n-th
column of input. Make sure your program does something intelligent with
very long lines, and if there are no blanks or tabs before the specified column. [J

Exercise 1-23. Write a program to remove all comments from a C program.
Don’t forget to handle quoted strings and character constants properly. C
comments do not nest. [

Exercise 1-24. Write a program to check a C program for rudimentary syntax
errors like unbalanced parentheses, brackets and braces. Don’t forget about
quotes, both single and double, escape sequences, and comments. (This
program is hard if you do it in full generality.) [J
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Variables and constants are the basic data objects manipulated in a pro-
gram. Declarations list the variables to be used, and state what type they have
and perhaps what their initial values are. Operators specify what is to be done
to them. Expressions combine variables and constants to produce new values.
The type of an object determines the set of values it can have and what op-
erations can be performed on it. These building blocks are the topics of this
chapter.

The ANSI standard has made many small changes and additions to basic
types and expressions. There are now signed and unsigned forms of all in-
teger types, and notations for unsigned constants and hexadecimal character
constants. Floating-point operations may be done in single precision; there is
also a long double type for extended precision. String constants may be con-
catenated at compile time. Enumerations have become part of the language,
formalizing a feature of long standing. Objects may be declared const, which
prevents them from being changed. The rules for automatic coercions among
arithmetic types have been augmented to handle the richer set of types.

2.1 Variable Names

Although we didn’t say so in Chapter 1, there are some restrictions on the
names of variables and symbolic constants. Names are made up of letters and
digits; the first character must be a letter. The underscore "_" counts as a let-
ter; it is sometimes useful for improving the readability of long variable names.
Don’t begin variable names with underscore, however, since library routines
often use such names. Upper case and lower case letters are distinct, so x and x
are two different names. Traditional C practice is to use lower case for variable
names, and all upper case for symbolic constants.

At least the first 31 characters of an internal name are significant. For
function names and external variables, the number may be less than 31, because
external names may be used by assemblers and loaders over which the language
has no control. For external names, the standard guarantees uniqueness only

35
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for 6 characters and a single case. Keywords like if, else, int, float, etc., are
reserved: you can’t use them as variable names. They must be in lower case.

It’s wise to choose variable names that are related to the purpose of the
variable, and that are unlikely to get mixed up typographically. We tend to use
short names for local variables, especially loop indices, and longer names for
external variables.

2.2 Data Types and Sizes

There are only a few basic data types in C:

char a single byte, capable of holding one character
in the local character set.

int an integer, typically reflecting the natural size
of integers on the host machine.

float  single-precision floating point.

double double-precision floating point.

In addition, there are a number of qualifiers that can be applied to these
basic types. short and long apply to integers:

short int sh;
long int counter;

The word int can be omitted in such declarations, and typically is.

The intent is that short and long should provide different lengths of in-
tegers where practical; int will normally be the natural size for a particular
machine. short is often 16 bits, 1ong 32 bits, and int either 16 or 32 bits.
Each compiler is free to choose appropriate sizes for its own hardware, subject
only to the restriction that shorts and ints are at least 16 bits, longs are at
least 32 bits, and short is no longer than int, which is no longer than long.

The qualifier signed or unsigned may be applied to char or any integer.
unsigned numbers are always positive or zero, and obey the laws of arith-
metic modulo 2", where 7 is the number of bits in the type. So, for instance,
if chars are 8 bits, unsigned char variables have values between 0 and 255,
while signed chars have values between —128 and 127 (in a two’s complement
machine). Whether plain chars are signed or unsigned is machine-dependent,
but printable characters are always positive.

The type 1long double specifies extended-precision floating point. As with
integers, the sizes of floating-point objects are implementation-defined; float,
double and long double could represent one, two or three distinct sizes.

The standard headers <limits.h> and <float.h> contain symbolic
constants for all of these sizes, along with other properties of the machine and
compiler. These are discussed in Appendix B.
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Exercise 2-1. Write a program to determine the ranges of char, short, int, and
long variables, both signed and unsigned, by printing appropriate values from
standard headers and by direct computation. Harder if you compute them:
determine the ranges of the various floating-point types.

2.3 Constants

An integer constant like 1234 is an int. A long constant is written with a
terminal 1 (ell) or ., as in 123456789L; an integer too big to fit into an int will
also be taken as a 1ong. Unsigned constants are written with a terminal u or U,
and the suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent
(1e-2) or both; their type is double, unless suffixed. The suffixes f or F indicate
a float constant; 1 or L indicate a 1long double.

The value of an integer can be specified in octal or hexadecimal instead of
decimal. A leading o (zero) on an integer constant means octal; a leading ox
or 0x means hexadecimal. For example, decimal 31 can be written as 037 in
octal and ox1f or ox1F in hex. Octal and hexadecimal constants may also be
followed by L to make them long and u to make them unsigned: 0XFUL is an
unsigned long constant with value 15 decimal.

A character constant 1s an integer, written as one character within single
quotes, such as 'x'. The value of a character constant is the numeric value
of the character in the machine’s character set. For example, in the ASCII
character set the character constant 'o' has the value 48, which is unrelated
to the numeric value o. If we write '0' instead of a numeric value like 48 that
depends on character set, the program is independent of the particular value
and easier to read. Character constants participate in numeric operations just
as any other integers, although they are most often used in comparisons with
other characters.

Certain characters can be represented in character and string constants by
escape sequences like \n (newline); these sequences look like two characters,
but represent only one. In addition, an arbitrary byte-sized bit pattern can be
specified by

"\000"
where ooo is one to three octal digits (0...7) or by
"\xhh'
where i/ 1s one or more hexadecimal digits (0...9, a...f, A...F). So we might write

#define VTAB '\013' /* ASCII vertical tab */
#define BELL '\007' /* ASCII bell character */

or, in hexadecimal,
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#define VTAB '\xb' /* ASCII vertical tab */
#define BELL '\x7' /* ASCII bell character */

The complete set of escape sequences is

\a alert (bell) character \\ backslash

\b  backspace \? question mark

\f formfeed \! single quote

\n  newline \" double quote

\r carriage return \ 000 octal number

\t horizontal tab \xhh hexadecimal number

\v  vertical tab

The character constant '\o' represents the character with value zero, the
null character. '\o0' is often written instead of o to emphasize the character
nature of some expression, but the numeric value is just 0.

A constant expression is an expression that involves only constants. Such
expressions may be evaluated during compilation rather than run-time, and
accordingly may be used in any place that a constant can occur, as in

#define MAXLINE 1000
char line[MAXLINE+1];

or

#define LEAP 1 /* in leap years */
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

A string constant, or string literal, is a sequence of zero or more characters
surrounded by double quotes, as in

"I am a string"
or
ne /* the empty string */

The quotes are not part of the string, but serve only to delimit it. The same
escape sequences used in character constants apply in strings; \ " represents the
double-quote character. String constants can be concatenated at compile time:

"hello," " world"

is equivalent to
"hello, world"

This 1s useful for splitting long strings across several source lines.

Technically, a string constant is an array of characters. The internal repre-
sentation of a string has a null character '\ 0" at the end, so the physical storage
required is one more than the number of characters written between the quotes.
This representation means that there is no limit to how long a string can be, but
programs must scan a string completely to determine its length. The standard
library function strlen(s) returns the length of its character string argument
s, excluding the terminal '\o'. Here is our version:
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/* strlen: return length of s */
int strlen(char s[])

{
int i;
i = 0;
while (s[i] !'= '\0")
++1;
return i;
}

strlen and other string functions are declared in the standard header
<string.h>.

Be careful to distinguish between a character constant and a string that
contains a single character: 'x' is not the same as "x". The former is an integer,
used to produce the numeric value of the letter x in the machine’s character set.
The latter is an array of characters that contains one character (the letter x)
anda '\o".

There is one other kind of constant, the enumeration constant. An enumer-
ation is a list of constant integer values, as in

enum boolean{ NO, YES };

The first name in an enum has value 0, the next 1, and so on, unless explicit
values are specified. If not all values are specified, unspecified values continue
the progression from the last specified value, as in the second of these examples:

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = '\t',
NEWLINE = '\n', VTAB = '\v', RETURN = '\r' };

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };
/* FEB is 2, MAR is 3, etc. */

Names in different enumerations must be distinct. Values need not be distinct
in the same enumeration.

Enumerations provide a convenient way to associate constant values with
names, an alternative to #define with the advantage that the values can be gen-
erated for you. Although variables of enum types may be declared, compilers
need not check that what you store in such a variable is a valid value for the
enumeration. Nevertheless, enumeration variables offer the chance of check-
ing and so are often better than #defines. In addition, a debugger may be able
to print values of enumeration variables in their symbolic form.
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2.4 Declarations

All variables must be declared before use, although certain declarations can
be made implicitly by context. A declaration specifies a type, and contains a
list of one or more variables of that type, as in

int lower, upper, step;
char ¢, 1line[1000];

Variables can be distributed among declarations in any fashion; the lists above
could equally well be written as

int lower;

int upper;

int step;

char c;

char 1ine[1000];

This latter form takes more space, but is convenient for adding a comment to
each declaration or for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed
by an equals sign and an expression, the expression serves as an initializer, as
in

char esc = '"\\';

int i= 0;

int limit = MAXLINE+1;
float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once
only, conceptually before the program starts executing, and the initializer must
be a constant expression. An explicitly initialized automatic variable is initial-
ized each time the function or block it is in is entered; the initializer may be
any expression. External and static variables are initialized to zero by default.
Automatic variables for which there is no explicit initializer have undefined (i.e.,
garbage) values.

The qualifier const can be applied to the declaration of any variable to
specify that its value will not be changed. For an array, the const qualifier says
that the elements will not be altered.

const double e

= 2.71828182845905;
const char msg[] =

"warning: ";

The const declaration can also be used with array arguments, to indicate that
the function does not change that array:

int strlen(const char[]);

The result is implementation-defined if an attempt is made to change a const.
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2.5 Arithmetic Operators

The binary arithmetic operators are +, -, , /, and the modulus operator %.
Integer division truncates any fractional part. The expression
X %y

produces the remainder when x is divided by y, and thus is zero when y divides
x exactly. For example, a year is a leap year if it is divisible by 4 but not by 100,
except that years divisible by 400 are leap years. Therefore
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
printf("%d is a leap year\n", year);

else
printf("%d is not a leap year\n", year);

The % operator cannot be applied to float or double. The direction of trun-
cation for / and the sign of the result for % are machine-dependent for negative
operands, as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower
than the precedence of ., /, and %, which is in turn lower than unary + and -.
Arithmetic operators associate left to right.

Table 2-1 at the end of this chapter summarizes precedence and associativ-
ity for all operators.

2.6 Relational and Logical Operators

The relational operators are
> >= < <=

They all have the same precedence. Just below them in precedence are the equal-
ity operators:

Relational operators have lower precedence than arithmetic operators, so an
expression like i < lim-1istakenasi < (1lim-1), as would be expected.

More interesting are the logical operators && and ||. Expressions con-
nected by && or || are evaluated left to right, and evaluation stops as soon
as the truth or falsehood of the result is known. Most C programs rely on
these properties. For example, here is a loop from the input function getline
that we wrote in Chapter 1:

for (i=0; i<lim -1 && (c=getchar()) != '\n' && c != EOF; ++i)
s[i] = c;

Before reading a new character it is necessary to check that there is room to
store it in the array s, so the test i < 1im-1 must be made first. Moreover, if
this test fails, we must not go on and read another character.
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Similarly, it would be unfortunate if ¢ were tested against EoF before
getchar is called; therefore the call and assignment must occur before the
character in c is tested.

The precedence of && is higher than that of ||, and both are lower than
relational and equality operators, so expressions like

i < 1lim - 1 && (¢ = getchar()) != '"\n' && c != EOF

need no extra parentheses. But since the precedence of ! = is higher than assign-
ment, parentheses are needed in

(c = getchar()) != '\n'

to achieve the desired result of assignment to ¢ and then comparison with '\n".
By definition, the numeric value of a relational or logical expression is 1 if
the relation is true, and 0 if the relation is false.
The unary negation operator ! converts a non-zero operand into 0, and a
zero operand into 1. A common use of ! is in constructions like

if (!valid)
rather than
if (valid == 0)

It’s hard to generalize about which form is better. Constructions like !valid
read nicely (“if not valid”), but more complicated ones can be hard to under-
stand.

Exercise 2-2. Write a loop equivalent to the for loop above without using &&
or|].U

2.7 Type Conversions

When an operator has operands of different types, they are converted to a
common type according to a small number of rules. In general, the only auto-
matic conversions are those that convert a “narrower” operand into a “wider”
one without losing information, such as converting an integer to floating point
in an expression like £ + i. Expressions that don’t make sense, like using a
float as a subscript, are disallowed. Expressions that might lose information,
like assigning a longer integer type to a shorter, or a floating-point type to an
integer, may draw a warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic
expressions. This permits considerable flexibility in certain kinds of character
transformations. One is exemplified by this naive implementation of the func-
tion atoi, which converts a string of digits into its numeric equivalent.
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/* atoi: convert s to integer */
int atoi(char s[])

{
int i, n;
n = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++1i)

n =10 * n + (s[i] - '0");

return n;

}

As we discussed in Chapter 1,the expression
s[i] - '0"

gives the numeric value of the character stored in s[i], because the values of
o', '1', etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which
maps a single character to lower case for the ASCII character set. If the char-
acter is not an upper case letter, lower returns it unchanged.

/* lower: convert c to lower case; ASCII only */
int lower(int c)

{
if (¢ >= 'A'" && c <= 'Z")
return ¢ + 'a' - 'A';
else
return c¢;
¥

This works for ASCII because corresponding upper case and lower case letters
are a fixed distance apart as numeric values and each alphabet is contiguous—
there is nothing but letters between A and z. This latter observation is not true
of the EBCDIC character set, however, so this code would convert more than
just letters in EBCDIC.

The standard header <ctype.h>, described in Appendix B, defines a family
of functions that provide tests and conversions that are independent of charac-
ter set. For example, the function tolower (c) returns the lower case value of ¢
if ¢ 1s upper case, so tolower is a portable replacement for the function lower
shown above. Similarly, the test

c >= '0' && c <= '9"'
can be replaced by
isdigit(c)
We will use the <ctype.h> functions from now on.
There is one subtle point about the conversion of characters to integers.
The language does not specify whether variables of type char are signed or un-
signed quantities. When a char is converted to an int, can it ever produce a

negative integer? The answer varies from machine to machine, reflecting dif-
ferences in architecture. On some machines a char whose leftmost bit is 1 will



44 CHAPTER 2. TYPES, OPERATORS, AND EXPRESSIONS

be converted to a negative integer (“sign extension”). On others, a char is pro-
moted to an int by adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machine’s standard
printing character set will never be negative, so these characters will always be
positive quantities in expressions. But arbitrary bit patterns stored in character
variables may appear to be negative on some machines, yet positive on others.
For portability, specify signed or unsigned if non-character data is to be stored
in char variables.

Relational expressions like i > j and logical expressions connected by &&
and | | are defined to have value 1 if true, and 0 if false. Thus the assignment

d=c > '0'" & ¢ <= '9'

sets d to 1 if ¢ is a digit, and 0 if not. However, functions like isdigit may
return any non-zero value for true. In the test part of if, while, for, etc.,
“true” just means “non-zero,” so this makes no difference.

Implicit arithmetic conversions work much as expected. In general, if an
operator like + or . that takes two operands (a binary operator) has operands
of different types, the “lower” type is promoted to the “higher” type before the
operation proceeds. The result is of the higher type. Section 6 of Appendix A
states the conversion rules precisely. If there are no unsigned operands, how-
ever, the following informal set of rules will suffice:

If either operand is 1ong double, convert the other to long double.
Otherwise, if either operand is double, convert the other to double.
Otherwise, if either operand is float, convert the other to float.
Otherwise, convert char and short to int.

Then, if either operand is 1long, convert the other to long.

Notice that floats in an expression are not automatically converted to
double; this is a change from the original definition. In general, mathematical
functions like those in <math.h> will use double precision. The main reason
for using float is to save storage in large arrays, or, less often, to save time on
machines where double-precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are in-
volved. The problem is that comparisons between signed and unsigned values
are machine-dependent, because they depend on the sizes of the various integer
types. For example, suppose that int is 16 bits and long is 32 bits. Then -1L
< 1u, because 1u, which is an int, is promoted to a signed long. But -1L >
1UL, because -1L is promoted to unsigned long and thus appears to be a large
positive number.

Conversions take place across assignments; the value of the right side is
converted to the type of the left, which is the type of the result.
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A character is converted to an integer, either by sign extension or not, as
described above.

Longer integers are converted to shorter ones or to chars by dropping the
excess high-order bits. Thus in

the value of ¢ is unchanged. This is true whether or not sign extension is in-
volved. Reversing the order of assignments might lose information, however.

If x1s float and i is int, then x = i and i = x both cause conversions;
float to int causes truncation of any fractional part. When double is con-
verted to float, whether the value is rounded or truncated is implementation-
dependent.

Since an argument of a function call is an expression, type conversions also
take place when arguments are passed to functions. In the absence of a function
prototype, char and short become int, and float becomes double. This is
why we have declared function arguments to be int and double even when the
function is called with char and float.

Finally, explicit type conversions can be forced (“coerced”) in any expres-
sion, with a unary operator called a cast. In the construction

(type-name) expression

the expression is converted to the named type by the conversion rules above.
The precise meaning of a cast is as if the expression were assigned to a vari-
able of the specified type, which is then used in place of the whole construction.
For example, the library routine sqrt expects a double argument, and will
produce nonsense if inadvertently handed something else. (sqrt is declared in
<math.h>.) So if n is an integer, we can use

sqrt((double) n)

to convert the value of n to double before passing it to sqrt. Note that the cast
produces the value of n in the proper type; n itself is not altered. The cast op-
erator has the same high precedence as other unary operators, as summarized
in the table at the end of this chapter.

If arguments are declared by a function prototype, as they normally should
be, the declaration causes automatic coercion of any arguments when the func-
tion is called. Thus, given a function prototype for sqrt:

double sgrt(double);
the call
root2 = sqrt(2);

coerces the integer 2 into the double value 2.0 without any need for a cast.
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The standard library includes a portable implementation of a pseudo-
random number generator and a function for initializing the seed; the former
illustrates a cast:

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{
}

next = seed;

Exercise 2-3. Write the function htoi(s), which converts a string of hexadec-
imal digits (including an optional ox or 0x) into its equivalent integer value.
The allowable digits are o through 9, a through £, and a through r. J

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing vari-
ables. The increment operator ++ adds 1 to its operand, while the decrement
operator -- subtracts 1. We have frequently used ++ to increment variables, as
n

if (¢ == "\n")
++nl;

The unusual aspect is that ++ and -- may be used either as prefix operators
(before the variable, as in ++n), or postfix (after the variable: n++). In both cases,
the effect is to increment n. But the expression ++n increments n before its value
is used, while n++ increments n after its value has been used. This means that
in a context where the value is being used, not just the effect, ++n and n++ are
different. If n is 5, then

X = n++;
sets x to 5, but
X = ++n;

sets x to 6. In both cases, n becomes 6. The increment and decrement operators
can only be applied to variables; an expression like (i+3j)++ is illegal.
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In a context where no value is wanted, just the incrementing effect, as in

if (¢ == '"\n')
nl++;

prefix and postfix are the same. But there are situations where one or the other
is specifically called for. For instance, consider the function squeeze(s,c),
which removes all occurrences of the character ¢ from the string s.

/* squeeze: delete all ¢ from s */
void squeeze(char s[], int c¢)

{
int i, j;
for (i = j = 0; s[i] != "\0'; i++)
if (s[i] !'= ¢)
s[j++] = s[i];
s[j] = "\0";
¥

Each time a non-c occurs, it is copied into the current j position and only then
1s j incremented to be ready for the next character. This is exactly equivalent
to

if (s[i] !'= ¢) {
s[3] = s[il];
Jj++;

}

Another example of a similar construction comes from the getline function
that we wrote in Chapter 1, where we can replace

if (¢ == '"\n') {
s[i] = c;
++1i;

}
by the more compact

if (¢ == '\n')
s[i++] = c;

As a third example, consider the standard function strcat(s,t), which
concatenates the string t to the end of the string s. strcat assumes that there
1s enough space in s to hold the combination. As we have written it, strcat
returns no value; the standard library version returns a pointer to the resulting
string.
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/* strcat: concatenate t to end of s; s must be big enough */
void strcat(char s[], char t[])

{
int i, j;
i = j = O;
while (s[i] != '"\0'") /* find end of s */
i++;
while ((s[i++] = t[j++]) != '\0') /* copy t */
}

As each character is copied from t to s, the postfix ++ is applied to both i and
j to make sure that they are in position for the next pass through the loop.

Exercise 2-4. Write an alternate version of squeeze(s1,s2) that deletes each
character in s1 that matches any character in the string s2. [

Exercise 2-5. Write the function any(s1, s2), which returns the first location in
the string s1 where any character from the string s2 occurs, or -1 if s1 contains
no characters from s2. (The standard library function strpbrk does the same
job but returns a pointer to the location.) [J

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied
to integral operands, that is, char, short, int, and long, whether signed or
unsigned.

&  bitwise AND

|  bitwise inclusive OR

~  bitwise exclusive OR

<< left shift

>> right shift

~ one’s complement (unary)

The bitwise AND operator & is often used to mask off some set of bits; for
example,
n=nég&o0177;
sets to zero all but the low-order 7 bits of n.
The bitwise OR operator | is used to turn bits on:
X = x | SET_ON;
sets to one in x the bits that are set to one in SET_ON.

The bitwise exclusive OR operator 4 sets a one in each bit position where
its operands have different bits, and zero where they are the same.
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One must distinguish the bitwise operators & and | from the logical op-
erators && and | |, which imply left-to-right evaluation of a truth value. For
example, if xis 1 and y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their left
operand by the number of bit positions given by the right operand, which must
be positive. Thus x << 2 shifts the value of x left by two positions, filling va-
cated bits with zero; this is equivalent to multiplication by 4. Right shifting an
unsigned quantity always fills vacated bits with zero. Right shifting a signed
quantity will fill with sign bits (“arithmetic shift”) on some machines and with
0-bits (“logical shift”) on others.

The unary operator ~ yields the one’s complement of an integer; that is, it
converts each 1-bit into a 0-bit and vice versa. For example,

X = xXx & ~077

sets the last six bits of x to zero. Note that x & ~077 is independent of word
length, and is thus preferable to, for example, x & 0177700, which assumes
that x is a 16-bit quantity. The portable form involves no extra cost, since ~077
1s a constant expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function
getbits(x,p,n) that returns the (right adjusted) n-bit field of x that begins at
position p. We assume that bit position 0 is at the right end and that n and p
are sensible positive values. For example, getbits(x, 4,3) returns the three
bits in bit positions 4, 3 and 2, right adjusted.

/* getbits: get n bits from position p */
unsigned getbits(unsigned x, int p, int n)

{
}

return (x >> (p+l1-n)) & ~(~0 << n);

The expression x >> (p+1-n) moves the desired field to the right end of the
word. ~o is all 1-bits; shifting it left n bit positions with ~o<<n places zeros in
the rightmost n bits; complementing that with ~ makes a mask with ones in
the rightmost n bits.

Exercise 2-6. Write a function setbits(x,p,n,y) that returns x with the n
bits that begin at position p set to the rightmost n bits of y, leaving the other
bits unchanged. [J

Exercise 2-7. Write a function invert(x,p,n) that returns x with the n bits
that begin at position p inverted (i.e., 1 changed into 0 and vice versa), leaving
the others unchanged. [J

Exercise 2-8. Write a function rightrot(x,n) that returns the value of the
integer x rotated to the right by n bit positions. [
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2.10 Assignment Operators and Expressions

Expressions such as
i=1i+2
in which the variable on the left hand side is repeated immediately on the right,
can be written in the compressed form
i += 2
The operator += is called an assignment operator.

Most binary operators (operators like + that have a left and right operand)
have a corresponding assignment operator op =, where op is one of

+ =% /% << > & |
If expr; and expr, are expressions, then
expr; op = expr;
1s equivalent to
expr; = (expry) op (exprz)
except that expr; is computed only once. Notice the parentheses around expr;:
X *=y + 1
means
X =x * (y + 1)
rather than
X =X *y+1

As an example, the function bitcount counts the number of 1-bits in its
integer argument.

/* bitcount: count 1 bits in x */
int bitcount(unsigned x)

{
int b;
for (b = 0; x != 0; x >>= 1)
if (x & 01)
b++;
return b;
¥

Declaring the argument x to be unsigned ensures that when it is right-shifted,
vacated bits will be filled with zeros, not sign bits, regardless of the machine the
program is run on.

Quite apart from conciseness, assignment operators have the advantage
that they correspond better to the way people think. We say “add 2 to i” or



2.11. CONDITIONAL EXPRESSIONS 51

“increment i by 2,” not “take i, add 2, then put the result back in i.” Thus
the expression i += 2 is preferable to i = i+2. In addition, for a complicated
expression like

yyvall[yypv[p3+p4] + yypv[pl+p2]] += 2

the assignment operator makes the code easier to understand, since the reader
doesn’t have to check painstakingly that two long expressions are indeed the
same, or to wonder why they’re not. And an assignment operator may even
help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can
occur in expressions; the most common example is

while ((c¢ = getchar()) != EOF)

The other assignment operators (+=, -=, etc.) can also occur in expressions,
although this is less frequent.

In all such expressions, the type of an assignment expression is the type of
its left operand, and the value is the value after the assignment.

Exercise 2-9. In a two’s complement number system, x &= (x-1) deletes the
rightmost 1-bit in x. Explain why. Use this observation to write a faster version
of bitcount. OJ

2.11 Conditional Expressions

The statements

if (a > b)
z = a;
else
z = b;

compute in z the maximum of a and b. The conditional expression, written with
the ternary operator "2: ", provides an alternate way to write this and similar
constructions. In the expression

expr; ? expr, : expr;

the expression expr; is evaluated first. If it is non-zero (true), then the expres-
sion expr; is evaluated, and that is the value of the conditional expression. Oth-
erwise expr; is evaluated, and that is the value. Only one of expr, and expr; is
evaluated. Thus to set z to the maximum of a and b,

z = (a>b) ? a: b; /* z = max(a, b) */
It should be noted that the conditional expression is indeed an expression,

and it can be used wherever any other expression can be. If expr, and expr; are
of different types, the type of the result is determined by the conversion rules



52 CHAPTER 2. TYPES, OPERATORS, AND EXPRESSIONS

discussed earlier in this chapter. For example, if £ is a float and n is an int,
then the expression

(n>0) ? £ :n

1s of type float regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional
expression, since the precedence of ?: is very low, just above assignment. They
are advisable anyway, however, since they make the condition part of the ex-
pression easier to see.

The conditional expression often leads to succinct code. For example, this
loop prints n elements of an array, 10 per line, with each column separated by
one blank, and with each line (including the last) terminated by a newline.

for (i = 0; i < n; i++)
printf("%6d%c", a[i], (i%10==9 || i==n-1) ? '\n' : ' ');

A newline is printed after every tenth element, and after the n-th. All other ele-
ments are followed by one blank. This might look tricky, but it’s more compact
than the equivalent if-else. Another good example is

printf("You have %d item%s.\n", n, n==1 ? "" : "s");

Exercise 2-10. Rewrite the function lower, which converts upper case letters to
lower case, with a conditional expression instead of if-else. [J

2.12 Precedence and Order of Evaluation

Table 2-1 summarizes the rules for precedence and associativity of all oper-
ators, including those that we have not yet discussed. Operators on the same
line have the same precedence; rows are in order of decreasing precedence, so,
for example, ., /, and % all have the same precedence, which is higher than that
of binary + and -. The “operator” () refers to function call. The operators ->
and . are used to access members of structures; they will be covered in Chap-
ter 6, along with sizeof (size of an object). Chapter 5 discusses . (indirection
through a pointer) and & (address of an object), and Chapter 3 discusses the
comma operator.

Note that the precedence of the bitwise operators &, ~, and | falls below ==
and !=. This implies that bit-testing expressions like

if ((x & MASK) == 0) ...

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands
of an operator are evaluated. (The exceptions are &&, ||, ?:, and ', '.) For
example, in a statement like
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TABLE 2-1. PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

OPERATORS

ASSOCIATIVITY

o 01 -

! ~ ++ —— + - * & (type) sizeof

left to right
right to left

x / % left to right
+ - left to right
<< >> left to right

left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
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, left to right

Unary +, -, and * have higher precedence than the binary forms.

x = £() + 9();

£ may be evaluated before g or vice versa; thus if either £ or g alters a variable on
which the other depends, x can depend on the order of evaluation. Intermediate
results can be stored in temporary variables to ensure a particular sequence.

Similarly, the order in which function arguments are evaluated is not spec-
ified, so the statement

printf("%d %d\n", ++n, power(2, n)); /* WRONG */

can produce different results with different compilers, depending on whether n
1s incremented before power is called. The solution, of course, is to write

++n;
printf("%d %d\n", n, power(2, n));

Function calls, nested assignment statements, and increment and decre-
ment operators cause “side effects”—some variable is changed as a by-product
of the evaluation of an expression. In any expression involving side effects,
there can be subtle dependencies on the order in which variables taking part in
the expression are updated. One unhappy situation is typified by the statement

a[i] = i++;

The question is whether the subscript is the old value of i or the new. Compilers
can interpret this in different ways, and generate different answers depending
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on their interpretation. The standard intentionally leaves most such matters
unspecified. When side effects (assignment to variables) take place within an
expression is left to the discretion of the compiler, since the best order depends
strongly on machine architecture. (The standard does specify that all side ef-
fects on arguments take effect before a function is called, but that would not
help in the call to printf above.)

The moral is that writing code that depends on order of evaluation is a bad
programming practice in any language. Naturally, it is necessary to know what
things to avoid, but if you don’t know /ow they are done on various machines,
you won’t be tempted to take advantage of a particular implementation.
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The control-flow statements of a language specify the order in which com-
putations are performed. We have already met the most common control-flow
constructions in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf(...) becomes a statement
when it is followed by a semicolon, as in
X = 0;
i++;

printf(...);

In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and } are used to group declarations and statements together into
a compound statement, or block, so that they are syntactically equivalent to a
single statement. The braces that surround the statements of a function are one
obvious example; braces around multiple statements after an if, else, while,
or for are another. (Variables can be declared inside any block; we will talk
about this in Chapter 4.) There is no semicolon after the right brace that ends
a block.

3.2 If-Else

The if-else statement is used to express decisions. Formally, the syntax
1s
if (expression)
statement;

else
statement,;

55
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where the else part is optional. The expression is evaluated; if it is true (that
is, if expression has a non-zero value), statement, is executed. If it is false (ex-
pression 1s zero) and if there is an else part, statement, is executed instead.

Since an if simply tests the numeric value of an expression, certain coding
shortcuts are possible. The most obvious is writing

if (expression)
instead of
if (expression !'= 0)

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an i f-else is optional, there is an ambiguity when
an else is omitted from a nested if sequence. This is resolved by associating
the else with the closest previous else-less if. For example, in

if (n > 0)
if (a > b)
z = a;
else
zZ = b;

the else goes with the inner if, as we have shown by indentation. If that isn’t
what you want, braces must be used to force the proper association:

if (n > 0) {

if (a > b)
z = aj;
}
else
z = b;

The ambiguity is especially pernicious in situations like this:

if (n >= 0)

for (i = 0; i < n; i++)
if (s[i] > 0) {
printf("...");
return i;
¥
else /* WRONG */
printf("error -- n is negative\n");

The indentation shows unequivocally what you want, but the compiler doesn’t

get the message, and associates the else with the inner if. This kind of bug

can be hard to find; it’s a good idea to use braces when there are nested ifs.
By the way, notice that there is a semicolon after z = ain
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if (a > b)
z = aj;
else
z = b;

This is because grammatically, a statement follows the if, and an expression
statement like "z = a;" is always terminated by a semicolon.

3.3 Else-If
The construction

if (expression)
Statement

else if (expression)
statement

else if (expression)
statement

else if (expression)
Statement

else
Statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The expres-
sions are evaluated in order; if any expression is true, the statement associated
with it is executed, and this terminates the whole chain. As always, the code
for each statement is either a single statement, or a group in braces.

The last else part handles the “none of the above” or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
Statement

can be omitted, or it may be used for error checking to catch an “impossible”
condition.

To illustrate a three-way decision, here is a binary search function that de-
cides if a particular value x occurs in the sorted array v. The elements of v must
be in increasing order. The function returns the position (a number between o
and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the
array v. If x is less than the middle value, searching focuses on the lower half of
the table, otherwise on the upper half. In either case, the next step is to compare
x to the middle element of the selected half. This process of dividing the range
in two continues until the value is found or the range is empty.
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/* binsearch: find x in v[0] <= v[1l] <= ... <= v[n-1] */
int binsearch(int x, int v[], int n)
{

int low, high, mid;

low = 0;
high = n - 1;
while (low <= high) {
mid = (low+high) / 2;
if (x < v[mid])
high = mid - 1;
else if (x > v[mid])
low = mid + 1;
else /* found match */
return mid;

}

return -1; /* no match */

}

The fundamental decision is whether x is less than, greater than, or equal to
the middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one
would suffice (at the price of more tests outside). Write a version with only one
test inside the loop and measure the difference in run-time. [J

3.4 Switch

The switch statement is a multi-way decision that tests whether an expres-
sion matches one of a number of constant integer values, and branches accord-

ingly.

switch (expression) {
case const-expr : Sstatement
case const-expr : Statement
default: Statement

}

Each case is labeled by one or more integer-valued constants or constant ex-
pressions. If a case matches the expression value, execution starts at that case.
All case expressions must be different. The case labeled default is executed if
none of the other cases are satisfied. A default is optional; if it isn’t there and
if none of the cases match, no action at all takes place. Cases and the default
clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit,
white space, and all other characters, using a sequence of if ... else if ...
else. Here is the same program with a switch:
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#include <stdio.h>

main() /* count digits, white space, others */

{
int ¢, i, nwhite, nother, ndigit[10];
nwhite = nother = 0;
for (i = 0; i < 10; i++)
ndigit[i] = 0O;
while ((c = getchar()) != EOF) {
switch (c¢) {
case '0': case 'l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
ndigit[c-'0"]++;
break;
case ' ':
case '\n':
case '\t':
nwhite++;
break;
default:
nother++;
break;
}
¥
printf("digits =");
for (i = 0; i < 10; i++)
printf(" %d", ndigit[i]);
printf(", white space = %d, other = %d\n",
nwhite, nother);
return 0;
3

The break statement causes an immediate exit from the switch. Because
cases serve just as labels, after the code for one case is done, execution falls
through to the next unless you take explicit action to escape. break and return
are the most common ways to leave a switch. A break statement can also
be used to force an immediate exit from while, for, and do loops, as will be
discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
several cases to be attached to a single action, as with the digits in this example.
But it also implies that normally each case must end with a break to prevent
falling through to the next. Falling through from one case to another is not
robust, being prone to disintegration when the program is modified. With the
exception of multiple labels for a single computation, fall-throughs should be
used sparingly, and commented.

As a matter of good form, put a break after the last case (the default
here) even though it’s logically unnecessary. Some day when another case gets
added at the end, this bit of defensive programming will save you.
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Exercise 3-2. Write a function escape(s, t) that converts characters like new-
line and tab into visible escape sequences like \n and \t as it copies the string t
to s. Use a switch. Write a function for the other direction as well, converting
escape sequences into the real characters. [

3.5 Loops—While and For

We have already encountered the while and for loops. In

while (expression)
statement

the expression is evaluated. If it is non-zero, statement is executed and expres-
sion is re-evaluated. This cycle continues until expression becomes zero, at
which point execution resumes after statement.

The for statement

for (expry; expry; exprz)
Statement

is equivalent to
expry;
while (expry) {
Statement
exprs;
¥

except for the behavior of continue, which is described in Section 3.7.
Grammatically, the three components of a for loop are expressions. Most
commonly, expr; and expr; are assignments or function calls and expr; is a re-
lational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr; or expr; is omitted, it is simply dropped from the
expansion. If the test, expr,, is not present, it is taken as permanently true, so

for (;;) {
}

is an “infinite” loop, presumably to be broken by other means, such as a break
Or return.

Whether to use while or for is largely a matter of personal preference. For
example, in

while ((c¢ = getchar()) == "' ' || ¢ == '"\n' || ¢ == "\t")
; /* skip white space characters */

there is no initialization or re-initialization, so the while is most natural.
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The for is preferable when there is a simple initialization and increment,
since it keeps the loop control statements close together and visible at the top
of the loop. This is most obvious in

for (i = 0; i < n; i++)

which is the C idiom for processing the first n elements of an array, the analog
of the Fortran DO loop or the Pascal for. The analogy is not perfect, how-
ever, since the index and limit of a C for loop can be altered from within the
loop, and the index variable i retains its value when the loop terminates for
any reason. Because the components of the for are arbitrary expressions, for
loops are not restricted to arithmetic progressions. Nonetheless, it is bad style
to force unrelated computations into the initialization and increment of a for,
which are better reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string
to its numeric equivalent. This one is slightly more general than the one in
Chapter 2; it copes with optional leading white space and an optional + or -
sign. Chapter 4 shows atof, which does the same conversion for floating-point
numbers.)

The structure of the program reflects the form of the input:

skip white space, if any

get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The whole
process terminates on the first character that could not be part of a number.

#include <ctype.h>

/* atoi: convert s to integer; version 2 */
int atoi(char s[])

{
int i, n, sign;
for (i = 0; isspace(s[i]); i++) /* skip white space */
sign = (s[i] == '-') ? -1 : 1;
if (s[i] == "+' || s[i] == '-') /* skip sign */
i++;
for (n = 0; isdigit(s[i]); i++)
n =10 * n + (s[i] - '0");
return sign * n;
}

The standard library provides a more elaborate function strtol for conversion
of strings to long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious
when there are several nested loops. The following function is a Shell sort for
sorting an array of integers. The basic idea of this sorting algorithm, which was
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invented in 1959 by D. L. Shell, is that in early stages, far-apart elements are
compared, rather than adjacent ones as in simpler interchange sorts. This tends
to eliminate large amounts of disorder quickly, so later stages have less work to
do. The interval between compared elements is gradually decreased to one, at
which point the sort effectively becomes an adjacent interchange method.

/* shellsort: sort v[0]...v[n-1] into increasing order */
void shellsort(int v[], int n)

{
int gap, i, j, temp;

for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; 1 < n; i++)
for (j=i-gap; j>=0 && v[jl>v[j+gap]; j-=gap) {
temp = v[j];
v[j] = v[j+gapl;
v[j+gap] = temp;

}

There are three nested loops. The outermost controls the gap between com-
pared elements, shrinking it from n/2 by a factor of two each pass until it be-
comes zero. The middle loop steps along the elements. The innermost loop
compares each pair of elements that is separated by gap and reverses any that
are out of order. Since gap is eventually reduced to one, all elements are even-
tually ordered correctly. Notice how the generality of the for makes the outer
loop fit the same form as the others, even though it is not an arithmetic pro-
gression.

One final C operator is the comma ", ", which most often finds use in the
for statement. A pair of expressions separated by a comma is evaluated left to
right, and the type and value of the result are the type and value of the right
operand. Thus in a for statement, it is possible to place multiple expressions
in the various parts, for example to process two indices in parallel. This is
illustrated in the function reverse(s), which reverses the string s in place.

#include <string.h>

/* reverse: reverse string s in place */
void reverse(char s[])

{

int ¢, i, j;

for (i = 0, j = strlen(s)-1; i < j; i++, j——) {
c = s[i];
s[i] = s[J];
s(3] = ¢
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The commas that separate function arguments, variables in declarations, etc.,
are not comma operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for
constructs strongly related to each other, as in the for loop in reverse, and in
macros where a multistep computation has to be a single expression. A comma
expression might also be appropriate for the exchange of elements in reverse,
where the exchange can be thought of as a single operation:

for (i =0

j = strlen(s)-1; i < j; i++, j--)
c =s

[i1; s[i] = s[3]; s[3] = c;

I~

Exercise 3-3. Write a function expand(s1,s2) that expands shorthand nota-
tions like a-z in the string s1 into the equivalent complete list abc. . .xyz in
s2. Allow for letters of either case and digits, and be prepared to handle cases
like a-b-c and a-z0-9 and -a-z. Arrange that a leading or trailing - is taken
literally. [J

3.6 Loops—Do-while

As we discussed in Chapter 1, the while and for loops test the termination
condition at the top. By contrast, the third loop in C, the do-while, tests at
the bottom after making each pass through the loop body; the body is always
executed at least once.

The syntax of the do is

do
statement
while (expression);

The statement 1s executed, then expression is evaluated. If it is true, statement
is evaluated again, and so on. When the expression becomes false, the loop
terminates. Except for the sense of the test, do-while is equivalent to the Pascal
repeat-until statement.

Experience shows that do-while is much less used than while and for.
Nonetheless, from time to time it is valuable, as in the following function itoa,
which converts a number to a character string (the inverse of atoi). The job
1s slightly more complicated than might be thought at first, because the easy
methods of generating the digits generate them in the wrong order. We have
chosen to generate the string backwards, then reverse it.
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/* itoa: convert n to characters in s */
void itoa(int n, char s[])

{
int i, sign;
if ((sign = n) < 0) /* record sign */
n = -n; /* make n positive */
i= 0;
do { /* generate digits in reverse order */
s[i++] = n % 10 + '0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
s[i++] = '-";
s[i] = '\0"';
reverse(s);
¥

The do-while is necessary, or at least convenient, since at least one character
must be installed in the array s, even if n is zero. We also used braces around
the single statement that makes up the body of the do-while, even though
they are unnecessary, so the hasty reader will not mistake the while part for
the beginning of a while loop.

Exercise 3-4. In a two’s complement number representation, our version of
itoa does not handle the largest negative number, that is, the value of n equal
to —(2%ordsize=1) - Explain why not. Modify it to print that value correctly,
regardless of the machine on which it runs. [J

Exercise 3-5. Write the function itob(n, s,b) that converts the integer n into
a base b character representation in the string s. In particular, itob(n,s, 16)
formats n as a hexadecimal integer in s. [J

Exercise 3-6. Write a version of itoa that accepts three arguments instead of
two. The third argument is a minimum field width; the converted number must
be padded with blanks on the left if necessary to make it wide enough. [

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by test-
ing at the top or bottom. The break statement provides an early exit from for,
while, and do, just as from switch. A break causes the innermost enclosing
loop or switch to be exited immediately.

The following function, trim, removes trailing blanks, tabs, and newlines
from the end of a string, using a break to exit from a loop when the rightmost
non-blank, non-tab, non-newline is found.
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/* trim: remove trailing blanks, tabs, newlines */
int trim(char s[])

{
int n;
for (n = strlen(s)-1; n >= 0; n--)
if (s[n] !'= ' ' && s[n] != '"\t' && s[n] != '\n')
break;
s[n+1] = '\0';
return n;
¥

strlen returns the length of the string. The for loop starts at the end and
scans backwards looking for the first character that is not a blank or tab or
newline. The loop is broken when one is found, or when n becomes negative
(that is, when the entire string has been scanned). You should verify that this
is correct behavior even when the string is empty or contains only white space
characters.

The continue statement is related to break, but less often used; it causes
the next iteration of the enclosing for, while, or do loop to begin. In the while
and do, this means that the test part is executed immediately; in the for, control
passes to the increment step. The continue statement applies only to loops,
not to switch. A continue inside a switch inside a loop causes the next loop
iteration.

As an example, this fragment processes only the non-negative elements in
the array a; negative values are skipped.

for (i = 0; i < n; i++) {
if (a[i] < 0) /* skip negative elements */
continue;

... /* do positive elements */

}

The continue statement is often used when the part of the loop that follows is
complicated, so that reversing a test and indenting another level would nest the
program too deeply.

3.8 Goto and Labels

C provides the infinitely-abusable goto statement, and labels to branch to.
Formally, the goto is never necessary, and in practice it is almost always easy
to write code without it. We have not used goto in this book.

Nevertheless, there are a few situations where gotos may find a place. The
most common is to abandon processing in some deeply nested structure, such
as breaking out of two or more loops at once. The break statement cannot be
used directly since it only exits from the innermost loop. Thus:
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for ( ... )
for ( ... ) {

if (disaster)
goto error;

error:
clean up the mess

This organization is handy if the error-handling code is non-trivial, and if errors
can occur in several places.

A label has the same form as a variable name, and 1s followed by a colon. It
can be attached to any statement in the same function as the goto. The scope
of a label is the entire function.

As another example, consider the problem of determining whether two ar-
rays a and b have an element in common. One possibility is

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
if (a[i] == b[3])
goto found;
/* didn't find any common element */

founa;
/* got one: a[i] == b[]] */

Code involving a goto can always be written without one, though perhaps

at the price of some repeated tests or an extra variable. For example, the array
search becomes

found = 0;
for (i = 0; i < n && !found; i++)
for (j = 0; j < m && !found; j++)
if (a[i] == b[J])
found = 1;
if (found)
/* got one: a[i-1] == b[j-1] */

else
/* didn't find any common element */

With a few exceptions like those cited here, code that relies on goto state-
ments is generally harder to understand and to maintain than code without

gotos. Although we are not dogmatic about the matter, it does seem that goto
statements should be used rarely, if at all.
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Functions break large computing tasks into smaller ones, and enable peo-
ple to build on what others have done instead of starting over from scratch.
Appropriate functions hide details of operation from parts of the program that
don’t need to know about them, thus clarifying the whole, and easing the pain
of making changes.

C has been designed to make functions efficient and easy to use; C pro-
grams generally consist of many small functions rather than a few big ones. A
program may reside in one or more source files. Source files may be compiled
separately and loaded together, along with previously compiled functions from
libraries. We will not go into that process here, however, since the details vary
from system to system.

Function declaration and definition is the area where the ANSI standard
has made the most visible changes to C. As we saw first in Chapter 1, it is now
possible to declare the types of arguments when a function is declared. The
syntax of function definition also changes, so that declarations and definitions
match. This makes it possible for a compiler to detect many more errors than it
could before. Furthermore, when arguments are properly declared, appropriate
type coercions are performed automatically.

The standard clarifies the rules on the scope of names; in particular, it re-
quires that there be only one definition of each external object. Initialization
is more general: automatic arrays and structures may now be initialized.

The C preprocessor has also been enhanced. New preprocessor facilities
include a more complete set of conditional compilation directives, a way to
create quoted strings from macro arguments, and better control over the macro
expansion process.

4.1 Basics of Functions

To begin, let us design and write a program to print each line of its input
that contains a particular “pattern” or string of characters. (This is a special
case of the UNIX program grep.) For example, searching for the pattern of

67
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letters "ould" in the set of lines

Ah Love! could you and I with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire!

will produce the output

Ah Love! could you and I with Fate conspire
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire!

The job falls neatly into three pieces:

while (there’s another line)
if (the line contains the pattern)
print it

Although it’s certainly possible to put the code for all of this in main, a
better way is to use the structure to advantage by making each part a separate
function. Three small pieces are easier to deal with than one big one, because
irrelevant details can be buried in the functions, and the chance of unwanted
interactions is minimized. And the pieces may even be useful in other programs.

“While there’s another line” is getline, a function that we wrote in Chap-
ter 1, and “print it” is printf, which someone has already provided for us.
This means we need only write a routine to decide whether the line contains an
occurrence of the pattern.

We can solve that problem by writing a function strindex(s,t) that re-
turns the position or index in the string s where the string t begins, or -1 if
s doesn’t contain t. Because C arrays begin at position zero, indexes will be
zero or positive, and so a negative value like -1 is convenient for signaling fail-
ure. When we later need more sophisticated pattern matching, we only have
to replace strindex; the rest of the code can remain the same. (The standard
library provides a function strstr that is similar to strindex, except that it
returns a pointer instead of an index.)

Given this much design, filling in the details of the program is straight-
forward. Here is the whole thing, so you can see how the pieces fit together.
For now, the pattern to be searched for is a literal string, which is not the
most general of mechanisms. We will return shortly to a discussion of how
to initialize character arrays, and in Chapter 5 will show how to make the
pattern a parameter that is set when the program is run. There is also a slightly
different version of getline; you might find it instructive to compare it to the
one Chapter 1.
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#include <stdio.h>
#define MAXLINE 1000 /* maximum input line length */

int getline(char line[], int max);
int strindex(char source[], char searchfor[]);

char pattern[] = "ould"; /* pattern to search for */

/* find all lines matching pattern */
main()
{

char line[MAXLINE];

int found = 0;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {
printf("%s", line);
found++;

}

return found;

/*¥ getline: get line into s, return length */
int getline(char s[], int lim)

{
int ¢, 1i;
i = 0;
while (--1lim > 0 && (c=getchar()) != EOF && c¢ != '\n')
s[i++] = c;
if (¢ == "\n")
s[i++] = c;
s[i] = "\0';
return i;
}

/* strindex: return index of t in s, -1 if none */
int strindex(char s[], char t[])

{
int i, j, k;
for (i = 0; s[i] != "\0'; i++) {
for (j=i, k=0; t[k]!='\0' && s[j]l==t[k]; j++, k++)
if (k > 0 && t[k] == '\0')
return i;
)
return -1;
}

Each function definition has the form
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return-type function-name (argument declarations)

declarations and statements

}
Various parts may be absent; a minimal function is

dummy () {}
which does nothing and returns nothing. A do-nothing function like this is
sometimes useful as a place holder during program development. If the return
type is omitted, int is assumed.

A program is just a set of definitions of variables and functions. Com-
munication between the functions is by arguments and values returned by the
functions, and through external variables. The functions can occur in any or-
der in the source file, and the source program can be split into multiple files, so
long as no function is split.

The return statement is the mechanism for returning a value from the
called function to its caller. Any expression can follow return:

return expression

The expression will be converted to the return type of the function if necessary.
Parentheses are often used around the expression, but they are optional.

The calling function is free to ignore the returned value. Furthermore, there
need be no expression after return; in that case, no value is returned to the
caller. Control also returns to the caller with no value when execution “falls off
the end” of the function by reaching the closing right brace. It is not illegal, but
probably a sign of trouble, if a function returns a value from one place and no
value from another. In any case, if a function fails to return a value, its “value”
is certain to be garbage.

The pattern-searching program returns a status from main, the number of
matches found. This value is available for use by the environment that called
the program.

The mechanics of how to compile and load a C program that resides on
multiple source files vary from one system to the next. On the UNIX system,
for example, the cc command mentioned in Chapter 1 does the job. Suppose
that the three functions are stored in three files called main.c, getline.c, and
strindex.c. Then the command

cc main.c getline.c strindex.c
compiles the three files, placing the resulting object code in files main.o,
getline.o, and strindex.o, then loads them all into an executable file called
a.out. If there is an error, say in main.c, that file can be recompiled by itself
and the result loaded with the previous object files, with the command

cc main.c getline.o strindex.o

The cc command uses the ".c" versus ".o" naming convention to distinguish
source files from object files.
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Exercise 4-1. Write the function strrindex(s, t), which returns the position
of the rightmost occurrence of t in s, or -1 if there is none. [

4.2 Functions Returning Non-integers

So far our examples of functions have returned either no value (void) or
an int. What if a function must return some other type? Many numerical
functions like sqrt, sin, and cos return double; other specialized functions
return other types. To illustrate how to deal with this, let us write and use the
function atof(s), which converts the string s to its double-precision floating-
point equivalent. atof is an extension of atoi, which we showed versions of
in Chapters 2 and 3. It handles an optional sign and decimal point, and the
presence or absence of either integer part or fractional part. Our version is
not a high-quality input conversion routine; that would take more space than
we care to use. The standard library includes an atof; the header <stdlib.h>
declares it.

First, atof itself must declare the type of value it returns, since it is not int.
The type name precedes the function name:

#include <ctype.h>

/* atof: convert string s to double */
double atof(char s[])

{
double val, power;
int i, sign;
for (i = 0; isspace(s[i]); i++) /* skip white space */
4
sign = (s[i] == '-') ? -1 : 1;
if (s[i] == "+" [] s[i] == '-")
i++;
for (val = 0.0; isdigit(s[i]); i++)
val = 10.0 * val + (s[i] - '0"');
if (s[i] == '.")
i++;
for (power = 1.0; isdigit(s[i]); i++) {
val = 10.0 * val + (s[i] - '0'");
power *= 10.0;
}
return sign * val / power;
¥

Second, and just as important, the calling routine must know that atof
returns a non-int value. One way to ensure this is to declare atof explicitly
in the calling routine. The declaration is shown in this primitive calculator
(barely adequate for check-book balancing), which reads one number per line,
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optionally preceded by a sign, and adds them up, printing the running sum
after each input:

#include <stdio.h>
#define MAXLINE 100

/* rudimentary calculator */
main()

{
double sum, atof(char []);

char line[MAXLINE];
int getline(char line[], int max);

sum = 0;

while (getline(line, MAXLINE) > 0)
printf("\t%g\n", sum += atof(line));

return O;

}
The declaration

double sum, atof(char []);

says that sum is a double variable, and that atof is a function that takes one
char[ ] argument and returns a double.

The function atof must be declared and defined consistently. If atof itself
and the call to it in main have inconsistent types in the same source file, the error
will be detected by the compiler. But if (as is more likely) atof were compiled
separately, the mismatch would not be detected, atof would return a double
that main would treat as an int, and meaningless answers would result.

In the light of what we have said about how declarations must match defi-
nitions, this might seem surprising. The reason a mismatch can happen is that
if there is no function prototype, a function is implicitly declared by its first
appearance in an expression, such as

sum += atof(line)

If a name that has not been previously declared occurs in an expression and is
followed by a left parenthesis, it is declared by context to be a function name,
the function is assumed to return an int, and nothing is assumed about its
arguments. Furthermore, if a function declaration does not include arguments,
as in

double atof();

that too is taken to mean that nothing is to be assumed about the arguments
of atof; all parameter checking is turned off. This special meaning of the
empty argument list is intended to permit older C programs to compile with
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new compilers. But it’s a bad idea to use it with new programs. If the function
takes arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write atoi (convert a string to
int) in terms of it:

/* atoi: convert string s to integer using atof */
int atoi(char s[])

{
double atof(char s[]);

return (int) atof(s);

}

Notice the structure of the declarations and the return statement. The value
of the expression in

return expression

is converted to the type of the function before the return is taken. Therefore,
the value of atof, a double, is converted automatically to int when it appears
in this return, since the function atoi returns an int. This operation does
potentially discard information, however, so some compilers warn of it. The
cast states explicitly that the operation is intended, and suppresses any warning.

Exercise 4-2. Extend atof to handle scientific notation of the form

123.45e-6

where a floating-point number may be followed by e or E and an optionally
signed exponent. []

4.3 External Variables

A C program consists of a set of external objects, which are either vari-
ables or functions. The adjective “external” is used in contrast to “internal,”
which describes the arguments and variables defined inside functions. Exter-
nal variables are defined outside of any function, and are thus potentially avail-
able to many functions. Functions themselves are always external, because C
does not allow functions to be defined inside other functions. By default, ex-
ternal variables and functions have the property that all references to them by
the same name, even from functions compiled separately, are references to the
same thing. (The standard calls this property external linkage.) In this sense,
external variables are analogous to Fortran COMMON blocks or variables in
the outermost block in Pascal. We will see later how to define external variables
and functions that are visible only within a single source file.
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Because external variables are globally accessible, they provide an alterna-
tive to function arguments and return values for communicating data between
functions. Any function may access an external variable by referring to it by
name, if the name has been declared somehow.

If a large number of variables must be shared among functions, external
variables are more convenient and efficient than long argument lists. As pointed
out in Chapter 1, however, this reasoning should be applied with some caution,
for it can have a bad effect on program structure, and lead to programs with
too many data connections between functions.

External variables are also useful because of their greater scope and lifetime.
Automatic variables are internal to a function; they come into existence when
the function is entered, and disappear when it is left. External variables, on the
other hand, are permanent, so they retain values from one function invocation
to the next. Thus if two functions must share some data, yet neither calls the
other, it is often most convenient if the shared data is kept in external variables
rather than passed in and out via arguments.

Let us examine this issue further with a larger example. The problem is to
write a calculator program that provides the operators +, -, ., and /. Because
it 1s easier to implement, the calculator will use reverse Polish notation instead
of infix. (Reverse Polish is used by some pocket calculators, and in languages
like Forth and Postscript.)

In reverse Polish notation, each operator follows its operands; an infix ex-
pression like

(1 - 2) * (4 +5)
is entered as

12 -45+ *

Parentheses are not needed; the notation is unambiguous as long as we know
how many operands each operator expects.

The implementation is simple. Each operand is pushed onto a stack; when
an operator arrives, the proper number of operands (two for binary operators)
1s popped, the operator is applied to them, and the result is pushed back onto
the stack. In the example above, for instance, 1 and 2 are pushed, then replaced
by their difference, —1. Next, 4 and 5 are pushed and then replaced by their sum,
9. The product of —1 and 9, which is —9, replaces them on the stack. The value
on the top of the stack is popped and printed when the end of the input line is
encountered.

The structure of the program is thus a loop that performs the proper
operation on each operator and operand as it appears:
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while (mext operator or operand is not end-of-file indicator)
if (number)
push it
else if (operator)
pop operands
do operation
push result
else if (newline)
pop and print top of stack
else
error

The operations of pushing and popping a stack are trivial, but by the time
error detection and recovery are added, they are long enough that it is better to
put each in a separate function than to repeat the code throughout the whole
program. And there should be a separate function for fetching the next input
operator or operand.

The main design decision that has not yet been discussed 1s where the stack
is, that is, which routines access it directly. One possibility is to keep it in main,
and pass the stack and the current stack position to the routines that push and
pop it. But main doesn’t need to know about the variables that control the
stack; it only does push and pop operations. So we have decided to store the
stack and its associated information in external variables accessible to the push
and pop functions but not to main.

Translating this outline into code is easy enough. If for now we think of
the program as existing in one source file, it will look like this:

#includes
#defines

function declarations for main
main() { ... }
external variables for push and pop

void push(double £f) { ... }
double pop(void) { ... }

int getop(char s[]) { ... }

routines called by getop

Later we will discuss how this might be split into two or more source files.

The function main is a loop containing a big switch on the type of operator
or operand; this is a more typical use of switch than the one shown in Section
3.4.
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#include <stdio.h>
#include <stdlib.h> /* for atof() */

#define MAXOP 100 /* max size of operand or operator */
#define NUMBER '0' /* signal that a number was found */

int getop(char []);
void push(double);
double pop(void);

/* reverse Polish calculator */

main()

{
int type;
double op2;

char s[MAXOP];

while ((type = getop(s)) != EOF) {

switch (type) {

case NUMBER:
push(atof(s));
break;

case '+':
push(pop() + pop());
break;

case '*':
push(pop() * pop());
break;

case '-':
op2 = pop();
push(pop() - op2);

break;
case '/':
op2 = pop();
if (op2 != 0.0)
push(pop() / op2);
else
printf("error: zero divisor\n");
break;
case '\n':
printf("\t%.8g\n", pop());
break;
default:
printf("error: unknown command %s\n", s);
break;
}
}
return O;
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Because + and . are commutative operators, the order in which the popped
operands are combined is irrelevant, but for - and / the left and right operands
must be distinguished. In

push(pop() - pop()); /* WRONG */

the order in which the two calls of pop are evaluated is not defined. To guar-
antee the right order, it is necessary to pop the first value into a temporary
variable as we did in main.

#define MAXVAL 100 /* maximum depth of val stack */

int sp = 0; /* next free stack position */
double val[MAXVAL]; /* value stack */

/* push: push f onto value stack */
void push(double f)

{
if (sp < MAXVAL)
val[sp++] = £f;
else
printf("error: stack full, can't push %g\n", £f);
}

/* pop: pop and return top value from stack */
double pop(void)

{
if (sp > 0)
return val[--sp];
else {
printf("error: stack empty\n");
return 0.0;
}
}

A variable is external if it is defined outside of any function. Thus the stack
and stack index that must be shared by push and pop are defined outside of
these functions. But main itself does not refer to the stack or stack position—
the representation can be hidden.

Let us now turn to the implementation of getop, the function that fetches
the next operator or operand. The task is easy. Skip blanks and tabs. If the
next character is not a digit or a decimal point, return it. Otherwise, collect a
string of digits (which might include a decimal point), and return NUMBER, the
signal that a number has been collected.
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#include <ctype.h>

int getch(void);
void ungetch(int);

/* getop: get next operator or numeric operand */
int getop(char s[])

{
int i, c¢;
while ((s[0] = ¢ = getch()) == " "' || ¢ == "\t'")
s[1] = "\0';
if (!isdigit(c) && c !'= '.")
return c; /* not a number */
i= 0;
if (isdigit(c)) /* collect integer part */
while (isdigit(s[++i] = ¢ = getch()))
if (¢ == '.") /* collect fraction part */
while (isdigit(s[++i] = ¢ = getch()))
s[i] = "\0';
if (c != EOF)
ungetch(c);
return NUMBER;
}

What are getch and ungetch? It is often the case that a program cannot de-
termine that it has read enough input until it has read too much. One instance
is collecting the characters that make up a number: until the first non-digit is
seen, the number is not complete. But then the program has read one character
too far, a character that it is not prepared for.

The problem would be solved if it were possible to “un-read” the unwanted
character. Then, every time the program reads one character too many, it could
push it back on the input, so the rest of the code could behave as if it had never
been read. Fortunately, it’s easy to simulate un-getting a character, by writing
a pair of cooperating functions. getch delivers the next input character to be
considered; ungetch remembers the characters put back on the input, so that
subsequent calls to getch will return them before reading new input.

How they work together is simple. ungetch puts the pushed-back char-
acters into a shared buffer—a character array. getch reads from the buffer if
there is anything there, and calls getchar if the buffer is empty. There must
also be an index variable that records the position of the current character in
the buffer.

Since the buffer and the index are shared by getch and ungetch and must
retain their values between calls, they must be external to both routines. Thus
we can write getch, ungetch, and their shared variables as:
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#define BUFSIZE 100

char buf[BUFSIZE]; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

int getch(void) /* get a (possibly pushed back) character */
{

}

return (bufp > 0) ? buf[--bufp] : getchar();

void ungetch(int c¢) /* push character back on input */
{
if (bufp >= BUFSIZE)
printf("ungetch: too many characters\n");
else
buf[bufp++] = c¢;
¥

The standard library includes a function ungetc that provides one character
of pushback; we will discuss it in Chapter 7. We have used an array for the
pushback, rather than a single character, to illustrate a more general approach.

Exercise 4-3. Given the basic framework, it’s straightforward to extend the cal-
culator. Add the modulus (%) operator and provisions for negative numbers. []

Exercise 4-4. Add commands to print the top element of the stack without
popping, to duplicate it, and to swap the top two elements. Add a command
to clear the stack. [J

Exercise 4-5. Add access to library functions like sin, exp, and pow. See
<math.h> in Appendix B, Section 4. [

Exercise 4-6. Add commands for handling variables. (It’s easy to provide
twenty-six variables with single-letter names.) Add a variable for the most
recently printed value. [

Exercise 4-7. Write a routine ungets(s) that will push back an entire string
onto the input. Should ungets know about buf and bufp, or should it just use
ungetch? [J

Exercise 4-8. Suppose that there will never be more than one character of
pushback. Modify getch and ungetch accordingly. [

Exercise 4-9. Our getch and ungetch do not handle a pushed-back Eor
correctly. Decide what their properties ought to be if an EoF is pushed back,
then implement your design. [

Exercise 4-10. An alternate organization uses getline to read an entire input
line; this makes getch and ungetch unnecessary. Revise the calculator to use
this approach. [J
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4.4 Scope Rules

The functions and external variables that make up a C program need not
all be compiled at the same time; the source text of the program may be kept
in several files, and previously compiled routines may be loaded from libraries.
Among the questions of interest are

* How are declarations written so that variables are properly declared dur-
ing compilation?

* How are declarations arranged so that all the pieces will be properly con-
nected when the program 1s loaded?

* How are declarations organized so there is only one copy?

* How are external variables initialized?

Let us discuss these topics by reorganizing the calculator program into several
files. As a practical matter, the calculator is too small to be worth splitting, but
it is a fine illustration of the issues that arise in larger programs.

The scope of a name is the part of the program within which the name can
be used. For an automatic variable declared at the beginning of a function, the
scope is the function in which the name is declared. Local variables of the same
name in different functions are unrelated. The same is true of the parameters
of the function, which are in effect local variables.

The scope of an external variable or a function lasts from the point at which
it is declared to the end of the file being compiled. For example, if main, sp,
val, push, and pop are defined in one file, in the order shown above, that is,

main() { ... }

int sp = 0;
double val[MAXVAL];

void push(double f) { ... }
double pop(void) { ... }

then the variables sp and val may be used in push and pop simply by naming
them; no further declarations are needed. But these names are not visible in
main, nor are push and pop themselves.

On the other hand, if an external variable is to be referred to before it is
defined, or if it is defined in a different source file from the one where it is being
used, then an extern declaration is mandatory.

It is important to distinguish between the declaration of an external vari-
able and its definition. A declaration announces the properties of a variable
(primarily its type); a definition also causes storage to be set aside. If the lines

int sp;
double val[MAXVAL];
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appear outside of any function, they define the external variables sp and val,
cause storage to be set aside, and also serve as the declaration for the rest of
that source file. On the other hand, the lines

extern int sp;
extern double val[];

declare for the rest of the source file that sp is an int and that val is a double
array (whose size is determined elsewhere), but they do not create the variables
or reserve storage for them.

There must be only one definition of an external variable among all the files
that make up the source program; other files may contain extern declarations
to access it. (There may also be extern declarations in the file containing the
definition.) Array sizes must be specified with the definition, but are optional
with an extern declaration.

Initialization of an external variable goes only with the definition.

Although it is not a likely organization for this program, the functions push
and pop could be defined in one file, and the variables val and sp defined and
initialized in another. Then these definitions and declarations would be neces-
sary to tie them together:

In filel:

extern int sp;
extern double vall[];

void push(double £f) { ... }

double pop(void) { ... }

In file2:
int sp = 0;
double val[MAXVAL];
Because the extern declarations in filel lie ahead of and outside the function
definitions, they apply to all functions; one set of declarations suffices for all of
filel. This same organization would also be needed if the definitions of sp and
val followed their use in one file.

4.5 Header Files

Let us now consider dividing the calculator program into several source
files, as it might be if each of the components were substantially bigger. The
main function would go in one file, which we will call main.c; push, pop, and
their variables go into a second file, stack.c; getop goes into a third, getop.c.
Finally, getch and ungetch go into a fourth file, getch.c; we separate them
from the others because they would come from a separately-compiled library
in a realistic program.
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There is one more thing to worry about—the definitions and declarations
shared among the files. As much as possible, we want to centralize this, so
that there is only one copy to get right and keep right as the program evolves.
Accordingly, we will place this common material in a header file, calc.h, which
will be included as necessary. (The #include line is described in Section 4.11.)
The resulting program then looks like this:

calc.h:

#define NUMBER '0Q'
void push(double);
double pop(void);
int getop(char []);
int getch(void);
void ungetch(int);

main.c: getop.c: stack.c:
#include <stdio.h> #include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <ctype.h> #include "calc.h"
#include "calc.h" #include "calc.h" #define MAXVAL 100
#define MAXOP 100 getop() { int sp = 0;
main() { “e double val[MAXVAL]

} int push(double) {
} cen

getch.c: } .

int pop(void) {
#include <stdio.h> } tee
#define BUFFSIZE 100

char buf[BUFSIZE];
int Dbufp = 0;
int getch(void) {

}
int ungetch(int) {

}

There is a tradeoff between the desire that each file have access only to
the information it needs for its job and the practical reality that it is harder to
maintain more header files. Up to some moderate program size, it is probably
best to have one header file that contains everything that is to be shared between
any two parts of the program; that is the decision we made here. For a much
larger program, more organization and more headers would be needed.
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4.6 Static Variables

The variables sp and val in stack.c, and buf and bufp in getch.c, are
for the private use of the functions in their respective source files, and are not
meant to be accessed by anything else. The static declaration, applied to an
external variable or function, limits the scope of that object to the rest of the
source file being compiled. External static thus provides a way to hide names
like buf and bufp in the getch-ungetch combination, which must be external
so they can be shared, yet which should not be visible to users of getch and
ungetch.

Static storage is specified by prefixing the normal declaration with the word
static. If the two routines and the two variables are compiled in one file, as in

static char buf[BUFSIZE]; /* buffer for ungetch */
static int bufp = 0; /* next free position in buf */

int getch(void) { ... }

void ungetch(int c¢) { ... }

then no other routine will be able to access buf and bufp, and those names will
not conflict with the same names in other files of the same program. In the
same way, the variables that push and pop use for stack manipulation can be
hidden, by declaring sp and val to be static.

The external static declaration is most often used for variables, but it can
be applied to functions as well. Normally, function names are global, visible
to any part of the entire program. If a function is declared static, however, its
name is invisible outside of the file in which it is declared.

The static declaration can also be applied to internal variables. Internal
static variables are local to a particular function just as automatic variables
are, but unlike automatics, they remain in existence rather than coming and
going each time the function is activated. This means that internal static
variables provide private, permanent storage within a single function.

Exercise 4-11. Modify getop so that it doesn’t need to use ungetch. Hint: use
an internal static variable. [

4.7 Register Variables

A register declaration advises the compiler that the variable in question
will be heavily used. The idea is that register variables are to be placed in ma-
chine registers, which may result in smaller and faster programs. But compilers
are free to ignore the advice.

The register declaration looks like
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register int x;
register char c;

and so on. The register declaration can only be applied to automatic vari-
ables and to the formal parameters of a function. In this latter case, it looks
like

f(register unsigned m, register long n)

{

register int i;

}

In practice, there are restrictions on register variables, reflecting the realities
of underlying hardware. Only a few variables in each function may be kept in
registers, and only certain types are allowed. Excess register declarations are
harmless, however, since the word register is ignored for excess or disallowed
declarations. And it is not possible to take the address of a register variable (a
topic to be covered in Chapter 5), regardless of whether the variable is actually
placed in a register. The specific restrictions on number and types of register
variables vary from machine to machine.

4.8 Block Structure

C is not a block-structured language in the sense of Pascal or similar lan-
guages, because functions may not be defined within other functions. On the
other hand, variables can be defined in a block-structured fashion within a func-
tion. Declarations of variables (including initializations) may follow the left
brace that introduces any compound statement, not just the one that begins a
function. Variables declared in this way hide any identically named variables
in outer blocks, and remain in existence until the matching right brace. For
example, in

if (n > 0) {
int i; /* declare a new i */

for (i = 0; i < n; i++)
}

the scope of the variable i is the “true” branch of the if; this i is unrelated
to any i outside the block. An automatic variable declared and initialized in a
block is initialized each time the block is entered. A static variable is initial-
ized only the first time the block is entered.

Automatic variables, including formal parameters, also hide external vari-
ables and functions of the same name. Given the declarations
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int x;
int y;

f(double x)

{
double y;

}

then within the function £, occurrences of x refer to the parameter, which is a
double; outside of £, they refer to the external int. The same is true of the
variable y.

As a matter of style, it’s best to avoid variable names that conceal names in
an outer scope; the potential for confusion and error is too great.

4.9 Initialization

Initialization has been mentioned in passing many times so far, but always
peripherally to some other topic. This section summarizes some of the rules,
now that we have discussed the various storage classes.

In the absence of explicit initialization, external and static variables are
guaranteed to be initialized to zero; automatic and register variables have un-
defined (i.e., garbage) initial values.

Scalar variables may be initialized when they are defined, by following the
name with an equals sign and an expression:

int x = 1;
char squote = '\'"';
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

For external and static variables, the initializer must be a constant expression;
the initialization is done once, conceptually before the program begins execu-
tion. For automatic and register variables, it is done each time the function or
block is entered.

For automatic and register variables, the initializer is not restricted to being
a constant: it may be any expression involving previously defined values, even
function calls. For example, the initializations of the binary search program in
Section 3.3 could be written as

int binsearch(int x, int v[], int n)

{
int low = 0;
int high = n - 1;
int mid;

¥

instead of
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int low, high, mid;

low = 0;

high = n - 1;
In effect, initializations of automatic variables are just shorthand for assign-
ment statements. Which form to prefer is largely a matter of taste. We have gen-
erally used explicit assignments, because initializers in declarations are harder
to see and further away from the point of use.

An array may be initialized by following its declaration with a list of initial-

izers enclosed in braces and separated by commas. For example, to initialize
an array days with the number of days in each month:

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

When the size of the array is omitted, the compiler will compute the length by
counting the initializers, of which there are 12 in this case.

If there are fewer initializers for an array than the number specified, the
missing elements will be zero for external, static, and automatic variables. It
1s an error to have too many initializers. There is no way to specify repetition
of an initializer, nor to initialize an element in the middle of an array without
supplying all the preceding values as well.

Character arrays are a special case of initialization; a string may be used
instead of the braces and commas notation:

char pattern[] = "ould";

is a shorthand for the longer but equivalent
char pattern[] = { 'o', 'u', 'l', 'd', '\0' };

In this case, the array size is five (four characters plus the terminating '\o").

4.10 Recursion

C functions may be used recursively; that is, a function may call itself either
directly or indirectly. Consider printing a number as a character string. As we
mentioned before, the digits are generated in the wrong order: low-order digits
are available before high-order digits, but they have to be printed the other way
around.

There are two solutions to this problem. One is to store the digits in an
array as they are generated, then print them in the reverse order, as we did with
itoain Section 3.6. The alternative is a recursive solution, in which printd first
calls itself to cope with any leading digits, then prints the trailing digit. Again,
this version can fail on the largest negative number.
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#include <stdio.h>

/* printd: print n in decimal */
void printd(int n)

{
if (n < 0) {
putchar('-");
n = -n;
}
if (n / 10)
printd(n / 10);
putchar(n % 10 + '0');
}

When a function calls itself recursively, each invocation gets a fresh set of all
the automatic variables, independent of the previous set. Thus in printd(123)
the first printd receives the argumentn = 123. It passes 12 to a second printd,
which in turn passes 1 to a third. The third-level printd prints 1, then returns
to the second level. That printd prints 2, then returns to the first level. That
one prints 3 and terminates.

Another good example of recursion is quicksort, a sorting algorithm devel-
oped by C. A. R. Hoare in 1962. Given an array, one element is chosen and
the others are partitioned into two subsets—those less than the partition ele-
ment and those greater than or equal to it. The same process is then applied
recursively to the two subsets. When a subset has fewer than two elements, it
doesn’t need any sorting; this stops the recursion.

Our version of quicksort is not the fastest possible, but it’s one of the sim-
plest. We use the middle element of each subarray for partitioning.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(int v[], int left, int right)

{
int i, last;
void swap(int v[], int i, int j);
if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */
swap(v, left, (left + right)/2); /* move partition elem */
last = left; /*¥ to v[0] */
for (i = left+1l; i <= right; i++) /* partition */
if (v[i] < v[left])
swap(v, ++last, 1i);
swap(v, left, last); /* restore partition elem */
gsort(v, left, last-1);
gsort(v, last+l, right);
¥

We moved the swapping operation into a separate function swap because it
occurs three times in gsort.
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/* swap: interchange v[i] and v[j] */
void swap(int v[], int i, int j)

{
int temp;
temp = v[i];
v[i] = v[3l;
v[j] = temp;
}

The standard library includes a version of gsort that can sort objects of any
type.

Recursion may provide no saving in storage, since somewhere a stack of
the values being processed must be maintained. Nor will it be faster. But
recursive code is more compact, and often much easier to write and understand
than the non-recursive equivalent. Recursion is especially convenient for recur-
sively defined data structures like trees; we will see a nice example in Section 6.5.

Exercise 4-12. Adapt the ideas of printd to write a recursive version of itoa;
that is, convert an integer into a string by calling a recursive routine. [

Exercise 4-13. Write a recursive version of the function reverse(s), which
reverses the string s in place. [

4.11 The C Preprocessor

C provides certain language facilities by means of a preprocessor, which
is conceptually a separate first step in compilation. The two most frequently
used features are #include, to include the contents of a file during compilation,
and #define, to replace a token by an arbitrary sequence of characters. Other
features described in this section include conditional compilation and macros
with arguments.

4.11.1 File Inclusion

File inclusion makes it easy to handle collections of #defines and declara-
tions (among other things). Any source line of the form

#include "filename~
or

#include <filename>

is replaced by the contents of the file filename. If the filename is quoted, search-
ing for the file typically begins where the source program was found; if it is
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not found there, or if the name is enclosed in < and >, searching follows an
implementation-defined rule to find the file. An included file may itself contain
#include lines.

There are often several #include lines at the beginning of a source file,
to include common #define statements and extern declarations, or to ac-
cess the function prototype declarations for library functions from headers like
<stdio.h>. (Strictly speaking, these need not be files; the details of how head-
ers are accessed are implementation-dependent.)

#include is the preferred way to tie the declarations together for a large
program. It guarantees that all the source files will be supplied with the same
definitions and variable declarations, and thus eliminates a particularly nasty
kind of bug. Naturally, when an included file is changed, all files that depend
on it must be recompiled.

4.11.2 Macro Substitution

A definition has the form
#define name replacement text

It calls for a macro substitution of the simplest kind—subsequent occurrences
of the token name will be replaced by the replacement text. The name in a
#define has the same form as a variable name; the replacement text is arbi-
trary. Normally the replacement text is the rest of the line, but a long definition
may be continued onto several lines by placing a \ at the end of each line to
be continued. The scope of a name defined with #define is from its point of
definition to the end of the source file being compiled. A definition may use
previous definitions. Substitutions are made only for tokens, and do not take
place within quoted strings. For example, if YEs is a defined name, there would
be no substitution in printf("YES") Or in YESMAN.
Any name may be defined with any replacement text. For example,

#define forever for (;;) /* infinite loop */

defines a new word, forever, for an infinite loop.

It is also possible to define macros with arguments, so the replacement text
can be different for different calls of the macro. As an example, define a macro
called max:

#define max(A, B) ((A) > (B) ? (A) : (B))

Although it looks like a function call, a use of max expands into in-line code.
Each occurrence of a formal parameter (here A or B) will be replaced by the
corresponding actual argument. Thus the line

x = max(p+q, r+s);
will be replaced by the line
x = ((p+tq) > (r+s) ? (p+q) : (r+s));
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So long as the arguments are treated consistently, this macro will serve for any
data type; there is no need for different kinds of max for different data types, as
there would be with functions.

If you examine the expansion of max, you will notice some pitfalls. The
expressions are evaluated twice; this is bad if they involve side effects like incre-
ment operators or input and output. For instance,

max(i++, J++) /* WRONG */

will increment the larger value twice. Some care also has to be taken with paren-
theses to make sure the order of evaluation is preserved; consider what happens
when the macro

#define square(x) x * x /* WRONG */

1s invoked as square(z+1).

Nonetheless, macros are valuable. One practical example comes from
<stdio.h>, in which getchar and putchar are often defined as macros to
avoid the run-time overhead of a function call per character processed. The
functions in <ctype.h> are also usually implemented as macros.

Names may be undefined with #undef, usually to ensure that a routine is
really a function, not a macro:

#undef getchar

int getchar(void) { ... }

Formal parameters are not replaced within quoted strings. If, however, a
parameter name is preceded by a # in the replacement text, the combination
will be expanded into a quoted string with the parameter replaced by the ac-
tual argument. This can be combined with string concatenation to make, for
example, a debugging print macro:

#define dprint(expr) printf(#expr " = %g\n", expr)
When this is invoked, as in

dprint(x/y);
the macro is expanded into

printf("x/y" " = %g\n", x/y);
and the strings are concatenated, so the effect is

printf("x/y = %g\n", x/y);

Within the actual argument, each " is replaced by \" and each \ by \\, so the
result is a legal string constant.

The preprocessor operator ## provides a way to concatenate actual argu-
ments during macro expansion. If a parameter in the replacement text is ad-
jacent to a ##, the parameter is replaced by the actual argument, the ## and
surrounding white space are removed, and the result is re-scanned. For exam-
ple, the macro paste concatenates its two arguments:
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#define paste(front, back) front ## back

SO paste(name, 1) creates the token namei.

The rules for nested uses of ## are arcane; further details may be found in
Appendix A.

Exercise 4-14. Define a macro swap(t,x,y) that interchanges two arguments
of type t. (Block structure will help.) [J

4.11.3 Conditional Inclusion

Itis possible to control preprocessing itself with conditional statements that
are evaluated during preprocessing. This provides a way to include code selec-
tively, depending on the value of conditions evaluated during compilation.

The #if line evaluates a constant integer expression (which may not include
sizeof, casts, or enum constants). If the expression is non-zero, subsequent
lines until an #endif or #elif or #else are included. (The preprocessor state-
ment #elif is like else if.) The expression defined(name) in a #if is 1 if
the name has been defined, and 0 otherwise.

For example, to make sure that the contents of a file hdr.h are included
only once, the contents of the file are surrounded with a conditional like this:

#if !defined(HDR)
#define HDR

/* contents of hdr.h go here */

#endif

The first inclusion of hdr.h defines the name HDR; subsequent inclusions will
find the name defined and skip down to the #endif. A similar style can be used
to avoid including files multiple times. If this style is used consistently, then
each header can itself include any other headers on which it depends, without
the user of the header having to deal with the interdependence.

This sequence tests the name sysTEM to decide which version of a header
to include:

#if SYSTEM == SYSV
#define HDR "sysv.h"
#elif SYSTEM == BSD

#define HDR "bsd.h"
#elif SYSTEM == MSDOS

#define HDR "msdos.h"
#else

#define HDR "default.h"
#endif
#include HDR
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The #ifdef and #ifndef lines are specialized forms that test whether a
name is defined. The first example of #if above could have been written

#ifndef HDR
#define HDR

/* contents of hdr.h go here */

#endif
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A pointer is a variable that contains the address of a variable. Pointers are
much used in C, partly because they are sometimes the only way to express a
computation, and partly because they usually lead to more compact and effi-
cient code than can be obtained in other ways. Pointers and arrays are closely
related; this chapter also explores this relationship and shows how to exploit it.

Pointers have been lumped with the goto statement as a marvelous way
to create impossible-to-understand programs. This is certainly true when they
are used carelessly, and it is easy to create pointers that point somewhere unex-
pected. With discipline, however, pointers can also be used to achieve clarity
and simplicity. This is the aspect that we will try to illustrate.

The main change in ANSI Cis to make explicit the rules about how pointers
can be manipulated, in effect mandating what good programmers already prac-
tice and good compilers already enforce. In addition, the type void * (pointer
to void) replaces char * as the proper type for a generic pointer.

5.1 Pointers and Addresses

Let us begin with a simplified picture of how memory is organized. A typi-
cal machine has an array of consecutively numbered or addressed memory cells
that may be manipulated individually or in contiguous groups. One common
situation is that any byte can be a char, a pair of one-byte cells can be treated
as a short integer, and four adjacent bytes form a long. A pointer is a group
of cells (often two or four) that can hold an address. So if ¢ is a char and p is
a pointer that points to it, we could represent the situation this way:

p: c:
I

The unary operator & gives the address of an object, so the statement

93
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p = &c;

assigns the address of c to the variable p, and p is said to “point to” c¢. The &
operator only applies to objects in memory: variables and array elements. It
cannot be applied to expressions, constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when ap-
plied to a pointer, it accesses the object the pointer points to. Suppose that x
and y are integers and ip is a pointer to int. This artificial sequence shows
how to declare a pointer and how to use & and *:

int x =1, y = 2, z[10];

int *ip; /* ip is a pointer to int */
ip = &x; /* ip now points to x */

y = *ip; /* y is now 1 */

*ip = 0; /* X is now 0 */

ip = &z[0]; /* ip now points to z[0] */

The declarations of x, y, and z are what we’ve seen all along. The declaration
of the pointer ip,

int *ip;
is intended as a mnemonic; it says that the expression *ip is an int. The syntax
of the declaration for a variable mimics the syntax of expressions in which the

variable might appear. This reasoning applies to function declarations as well.
For example,

double *dp, atof(char *);

says that in an expression *dp and atof(s) have values of type double, and
that the argument of atof is a pointer to char.

You should also note the implication that a pointer is constrained to point
to a particular kind of object: every pointer points to a specific data type.
(There is one exception: a “pointer to void” is used to hold any type of pointer
but cannot be dereferenced itself. We’ll come back to it in Section 5.11.)

If ip points to the integer x, then *ip can occur in any context where x
could, so

*ip = *ip + 10;

increments *ip by 10.
The unary operators * and & bind more tightly than arithmetic operators,
so the assignment

y = *ip + 1
takes whatever ip points at, adds 1, and assigns the result to y, while
*ip += 1

increments what ip points to, as do
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++*ip
and
(*ip)++

The parentheses are necessary in this last example; without them, the expres-
sion would increment ip instead of what it points to, because unary operators
like * and ++ associate right to left.

Finally, since pointers are variables, they can be used without dereferencing.
For example, if iq is another pointer to int,

ig = ip

copies the contents of ip into iq, thus making iq point to whatever ip pointed
to.

5.2 Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct way for
the called function to alter a variable in the calling function. For instance,
a sorting routine might exchange two out-of-order elements with a function
called swap. It is not enough to write

swap(a, b);

where the swap function is defined as

void swap(int x, int y) /* WRONG */

{
int temp;
temp = x;
X =Yy
y = temp;
}

Because of call by value, swap can’t affect the arguments a and b in the routine
that called it. The function above only swaps copies of a and b.

The way to obtain the desired effect is for the calling program to pass point-
ers to the values to be changed:

swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a. In
swap itself, the parameters are declared to be pointers, and the operands are
accessed indirectly through them.
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void swap(int *px, int *py) /* interchange *px and *py */

{
int temp;
temp = *px;
*pxX = *py;
*py = temp;
}
Pictorially:

in caller:

a:|:|<\
b:l:l\

In swap:

px:[
py:[

Pointer arguments enable a function to access and change objects in the
function that called it. As an example, consider a function getint that per-
forms free-format input conversion by breaking a stream of characters into
integer values, one integer per call. getint has to return the value it found and
also signal end of file when there is no more input. These values have to be
passed back by separate paths, for no matter what value is used for EoF, that
could also be the value of an input integer.

One solution is to have getint return the end of file status as its function
value, while using a pointer argument to store the converted integer back in the
calling function. This is the scheme used by scanf as well; see Section 7.4.

The following loop fills an array with integers by calls to getint:

int n, array[SIZE], getint(int *);

for (n = 0; n < SIZE && getint(&array[n]) != EOF; n++)
Each call sets array[n] to the next integer found in the input and increments n.
Notice that it is essential to pass the address of array[n] to getint. Otherwise
there is no way for getint to communicate the converted integer back to the
caller.
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Our version of getint returns EOF for end of file, zero if the next input is
not a number, and a positive value if the input contains a valid number.

#include <ctype.h>

int getch(void);
void ungetch(int);

/* getint: get next integer from input into *pn */
int getint(int *pn)

{
int ¢, sign;
while (isspace(c = getch())) /* skip white space */
if (!isdigit(c) && c != EOF && c != '+' && c != '=') {
ungetch(c); /* it's not a number */
return 0;
}
sign = (¢ == '=-') ? -1 : 1;
if (¢ == '"+' || ¢ == '-")
c = getch();
for (*pn = 0; isdigit(c); ¢ = getch())
*pn = 10 * *pn + (c - '0');
*pn *= sign;
if (¢ != EOF)
ungetch(c);
return c;
¥

Throughout getint, *pn is used as an ordinary int variable. We have also
used getch and ungetch (described in Section 4.3) so the one extra character
that must be read can be pushed back onto the input.

Exercise 5-1. As written, getint treats a + or - not followed by a digit as a

valid representation of zero. Fix it to push such a character back on the input.
O

Exercise 5-2. Write getfloat, the floating-point analog of getint. What type
does getfloat return as its function value? [J

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong
enough that pointers and arrays should be discussed simultaneously. Any op-
eration that can be achieved by array subscripting can also be done with point-
ers. The pointer version will in general be faster but, at least to the uninitiated,
somewhat harder to understand.

The declaration
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int a[1l0];

defines an array a of size 10, that is, a block of 10 consecutive objects named
a[o],a[l],...,a[9].

afo]a[1] a[9]

The notation a[i] refers to the i-th element of the array. If pa is a pointer to
an integer, declared as

int *pa;
then the assignment
pa = &a[0];

sets pa to point to element zero of a; that is, pa contains the address of a[0].

pa:

E\

S N N D I I I B

al[o]

Now the assignment
X = *pa;
will copy the contents of a[0] into x.
If pa points to a particular element of an array, then by definition pa+1

points to the next element, pa+i points i elements after pa, and pa-i points i
elements before. Thus, if pa points to a[0],

*(pat+l)

refers to the contents of a[1], pa+i 1S the address of a[i], and *(pa+1i) is the
contents of a[i].

pa: pa+1:\ pa+2/
- | ]
a[o0]

These remarks are true regardless of the type or size of the variables in the
array a. The meaning of “adding 1 to a pointer,” and by extension, all pointer
arithmetic, is that pa+1 points to the next object, and pa+i points to the i-th
object beyond pa.
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The correspondence between indexing and pointer arithmetic is very close.
By definition, the value of a variable or expression of type array is the address
of element zero of the array. Thus after the assignment

pa = &a[0];

pa and a have identical values. Since the name of an array is a synonym for the
location of the initial element, the assignment pa=&a[ 0] can also be written as

pa = a;

Rather more surprising, at least at first sight, is the fact that a reference to
a[i] can also be written as *(a+i). In evaluating a[i], C converts it to *(a+i)
immediately; the two forms are equivalent. Applying the operator & to both
parts of this equivalence, it follows that &a[i] and a+i are also identical: a+i
is the address of the i-th element beyond a. As the other side of this coin, if
pa is a pointer, expressions may use it with a subscript; pa[i] is identical to
*(pa+i). In short, an array-and-index expression is equivalent to one written
as a pointer and offset.

There is one difference between an array name and a pointer that must be
kept in mind. A pointer is a variable, so pa=a and pa++ are legal. But an array
name is not a variable; constructions like a=pa and a++ are illegal.

When an array name is passed to a function, what is passed is the loca-
tion of the initial element. Within the called function, this argument is a local
variable, and so an array name parameter is a pointer, that is, a variable con-
taining an address. We can use this fact to write another version of strlen,
which computes the length of a string.

/* strlen: return length of string s */
int strlen(char *s)

{
int n;
for (n = 0; *s != "\0'; s++)
n++;
return n;
)

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on
the character string in the function that called strlen, but merely increments
strlen’s private copy of the pointer. That means that calls like

strlen("hello, world"); /* string constant */

strlen(array); /* char array[100]; */
strlen(ptr); /* char *ptr; */

all work.
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As formal parameters in a function definition,

char s[];

and
char *s;

are equivalent; we prefer the latter because it says more explicitly that the pa-
rameter is a pointer. When an array name is passed to a function, the func-
tion can at its convenience believe that it has been handed either an array or
a pointer, and manipulate it accordingly. It can even use both notations if it
seems appropriate and clear.

It is possible to pass part of an array to a function, by passing a pointer to
the beginning of the subarray. For example, if a is an array,

f(&a[2])
and
f(a+2)

both pass to the function £ the address of the subarray that starts at a[2].
Within £, the parameter declaration can read

f(int arr[]) { ... }

or
f(int *arr) { ... }

So as far as £ is concerned, the fact that the parameter refers to part of a larger
array is of no consequence.

If one is sure that the elements exist, it is also possible to index backwards
in an array; p[-1], p[-2], and so on are syntactically legal, and refer to the ele-
ments that immediately precede p[0]. Of course, it is illegal to refer to objects
that are not within the array bounds.

5.4 Address Arithmetic

If p is a pointer to some element of an array, then p++ increments p to point
to the next element, and p+=1i increments it to point i elements beyond where
it currently does. These and similar constructions are the simplest forms of
pointer or address arithmetic.

C is consistent and regular in its approach to address arithmetic; its inte-
gration of pointers, arrays, and address arithmetic is one of the strengths of the
language. Let us illustrate by writing a rudimentary storage allocator. There
are two routines. The first, alloc(n), returns a pointer p to n consecutive char-
acter positions, which can be used by the caller of alloc for storing characters.
The second, afree(p), releases the storage thus acquired so it can be re-used
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later. The routines are “rudimentary” because the calls to afree must be made
in the opposite order to the calls made on alloc. That is, the storage managed
by alloc and afree is a stack, or last-in, first-out list. The standard library
provides analogous functions called malloc and free that have no such restric-
tions; in Section 8.7 we will show how they can be implemented.

The easiest implementation is to have alloc hand out pieces of a large char-
acter array that we will call allocbuf. This array is private to alloc and afree.
Since they deal in pointers, not array indices, no other routine need know the
name of the array, which can be declared static in the source file containing
alloc and afree, and thus be invisible outside it. In practical implementations,
the array may well not even have a name; it might instead be obtained by call-
ing malloc or by asking the operating system for a pointer to some unnamed
block of storage.

The other information needed is how much of allocbuf has been used.
We use a pointer, called allocp, that points to the next free element. When
alloc is asked for n characters, it checks to see if there is enough room left in
allocbuf. If s0, alloc returns the current value of allocp (i.e., the beginning
of the free block), then increments it by n to point to the next free area. If there
1S no room, alloc returns zero. afree(p) merely sets allocp to p if p is inside
allocbuf.

before call to alloc:

allocp:\
allocbuf:
<~— in use free _—
after call to alloc:
allocp:
allocbuf:
~— Inuse free —

#define ALLOCSIZE 10000 /* size of available space */

static char allocbuf[ALLOCSIZE]; /* storage for alloc */
static char *allocp = allocbuf; /* next free position */

char *alloc(int n) /* return pointer to n characters */
{
if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */
allocp += n;
return allocp - n; /* old p */
} else /* not enough room */
return 0;
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void afree(char *p) /* free storage pointed to by p */

{
if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

allocp = p;
}

In general a pointer can be initialized just as any other variable can, though
normally the only meaningful values are zero or an expression involving the
addresses of previously defined data of appropriate type. The declaration

static char *allocp = allocbuf;

defines allocp to be a character pointer and initializes it to point to the be-
ginning of allocbuf, which is the next free position when the program starts.
This could have also been written

static char *allocp = &allocbuf[0];

since the array name is the address of the zeroth element.
The test

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */

checks if there’s enough room to satisfy a request for n characters. If there is,
the new value of allocp would be at most one beyond the end of allocbuf. If
the request can be satisfied, alloc returns a pointer to the beginning of a block
of characters (notice the declaration of the function itself). If not, alloc must
return some signal that no space is left. C guarantees that zero is never a valid
address for data, so a return value of zero can be used to signal an abnormal
event, in this case, no space.

Pointers and integers are not interchangeable. Zero is the sole exception:
the constant zero may be assigned to a pointer, and a pointer may be compared
with the constant zero. The symbolic constant NULL is often used in place of
zero, as a mnemonic to indicate more clearly that this is a special value for a
pointer. NULL is defined in <stdio.h>. We will use NuLL henceforth.

Tests like

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */

and
if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

show several important facets of pointer arithmetic. First, pointers may be
compared under certain circumstances. If p and g point to members of the
same array, then relations like ==, ! =, <, >=, etc., work properly. For example,

p<aq
is true if p points to an earlier member of the array than q does. Any pointer
can be meaningfully compared for equality or inequality with zero. But the
behavior is undefined for arithmetic or comparisons with pointers that do not

point to members of the same array. (There is one exception: the address of
the first element past the end of an array can be used in pointer arithmetic.)
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Second, we have already observed that a pointer and an integer may be
added or subtracted. The construction

p+n

means the address of the n-th object beyond the one p currently points to. This
is true regardless of the kind of object p points to; n is scaled according to the
size of the objects p points to, which is determined by the declaration of p. If
an int is four bytes, for example, the int will be scaled by four.

Pointer subtraction is also valid: if p and g point to elements of the same
array, and p<q, then g-p+1 is the number of elements from p to g inclusive. This
fact can be used to write yet another version of strlen:

/* strlen: return length of string s */
int strlen(char *s)

{
char *p = s;
while (*p != "\0")
p++;
return p - s;
}

In its declaration, p is initialized to s, that is, to point to the first character
of the string. In the while loop, each character in turn is examined until the
'\o' at the end is seen. Because p points to characters, p++ advances p to the
next character each time, and p-s gives the number of characters advanced
over, that is, the string length. (The number of characters in the string could be
too large to store in an int. The header <stddef.h> defines a type ptrdiff_t
that is large enough to hold the signed difference of two pointer values. If we
were being very cautious, however, we would use size_t for the return type of
strlen, to match the standard library version. size_t is the unsigned integer
type returned by the sizeof operator.)

Pointer arithmetic is consistent: if we had been dealing with floats, which
occupy more storage than chars, and if p were a pointer to float, p++ would
advance to the next £1oat. Thus we could write another version of alloc that
maintains £loats instead of chars, merely by changing char to £1loat through-
out alloc and afree. All the pointer manipulations automatically take into
account the size of the object pointed to.

The valid pointer operations are assignment of pointers of the same type,
adding or subtracting a pointer and an integer, subtracting or comparing two
pointers to members of the same array, and assigning or comparing to zero.
All other pointer arithmetic is illegal. It is not legal to add two pointers, or to
multiply or divide or shift or mask them, or to add £1oat or double to them, or
even, except for void *, to assign a pointer of one type to a pointer of another
type without a cast.
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5.5 Character Pointers and Functions

A string constant, written as

"I am a string"

1s an array of characters. In the internal representation, the array is terminated
with the null character '\o' so that programs can find the end. The length in
storage is thus one more than the number of characters between the double
quotes.

Perhaps the most common occurrence of string constants is as arguments
to functions, as in

printf("hello, world\n");

When a character string like this appears in a program, access to it is through a
character pointer; printf receives a pointer to the beginning of the character
array. That is, a string constant is accessed by a pointer to its first element.

String constants need not be function arguments. If pmessage is declared
as

char *pmessage;
then the statement

pmessage = "now is the time";

assigns to pmessage a pointer to the character array. This is not a string copy;
only pointers are involved. C does not provide any operators for processing an
entire string of characters as a unit.
There is an important difference between these definitions:

char amessage[] = "now is the time"; /* an array */

char *pmessage = "now is the time"; /* a pointer */
amessage 1S an array, just big enough to hold the sequence of characters and
'\o' that initializes it. Individual characters within the array may be changed
but amessage will always refer to the same storage. On the other hand,
pmessage 1S a pointer, initialized to point to a string constant; the pointer may
subsequently be modified to point elsewhere, but the result is undefined if you
try to modify the string contents.

pmessage: [:E}—————1now is the time\Ol

amessage:|now is the time\Ol

We will illustrate more aspects of pointers and arrays by studying versions
of two useful functions adapted from the standard library. The first function is
strepy(s,t), which copies the string t to the string s. It would be nice just to
say s=t but this copies the pointer, not the characters. To copy the characters,
we need a loop. The array version is first:
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/* strcpy: copy t to s; array subscript version */
void strcpy(char *s, char *t)

{
int i;
i = 0;
while ((s[i] = t[i]) !'= '\0")
i++;
¥

For contrast, here is a version of strcpy with pointers:

/* strcpy: copy t to s; pointer version 1 */
void strcpy(char *s, char *t)

{
while ((*s = *t) != '\0') {
s++;
t++;
}
}

Because arguments are passed by value, strcpy can use the parameters s and t
in any way it pleases. Here they are conveniently initialized pointers, which are
marched along the arrays a character at a time, until the '\o' that terminates
t has been copied to s.

In practice, strepy would not be written as we showed it above. Experi-
enced C programmers would prefer

/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)

{
while ((*s++ = *t++) != '\0')

14

This moves the increment of s and t into the test part of the loop. The value of
*t++ 18 the character that t pointed to before t was incremented; the postfix ++
doesn’t change t until after this character has been fetched. In the same way,
the character is stored into the old s position before s is incremented. This
character is also the value that is compared against '\0' to control the loop.
The net effect is that characters are copied from t to s, up to and including the
terminating '\o".

As the final abbreviation, observe that a comparison against '\o' is re-
dundant, since the question is merely whether the expression is zero. So the
function would likely be written as
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/* strcpy: copy t to s; pointer version 3 */
void strcpy(char *s, char *t)

{
while (*s++ = *t++)

4

}

Although this may seem cryptic at first sight, the notational convenience is con-
siderable, and the idiom should be mastered, because you will see it frequently
in C programs.

The strepy in the standard library (<string.h>) returns the target string
as its function value.

The second routine that we will examine is stremp (s, t), which compares
the character strings s and t, and returns negative, zero or positive if s is lex-
icographically less than, equal to, or greater than t. The value is obtained by
subtracting the characters at the first position where s and t disagree.

/* strcemp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcmp(char *s, char *t)

{
int 1i;
for (i = 0; s[i] == t[i]; i++)
if (s[i] == '"\0')
return 0;
return s[i] - t[i];
}

The pointer version of strcmp:

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcemp(char *s, char *t)

{
for ( ; *s == *t; s++, t++)
if (*s == '\0')
return O;
return *s - *t;
)

Since ++ and -- are either prefix or postfix operators, other combinations
of » and ++ and -- occur, although less frequently. For example,

*--p

decrements p before fetching the character that p points to. In fact, the pair of
expressions

*p++ = val; /* push val onto stack */
val = *--p; /* pop top of stack into val */

are the standard idioms for pushing and popping a stack; see Section 4.3.
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The header <string.h> contains declarations for the functions mentioned
in this section, plus a variety of other string-handling functions from the
standard library.

Exercise 5-3. Write a pointer version of the function strcat that we showed
in Chapter 2: strcat(s,t) copies the string t to the end of's. [J

Exercise 5-4. Write the function strend(s, t), which returns 1 if the string t
occurs at the end of the string s, and zero otherwise. [J

Exercise 5-5. Write versions of the library functions strncpy, strncat, and
strncmp, Which operate on at most the first n characters of their argument
strings. For example, strncpy(s,t,n) copies at most n characters of t to s.
Full descriptions are in Appendix B. [

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exercises
with pointers instead of array indexing. Good possibilities include getline
Chapters 1 and 4), atoi, itoa, and their variants (Chapters 2, 3, and 4),
reverse Chapter 3), and strindex and getop (Chapter 4). [

5.6 Pointer Arrays; Pointers to Pointers

Since pointers are variables themselves, they can be stored in arrays just as
other variables can. Let us illustrate by writing a program that will sort a set of
text lines into alphabetic order, a stripped-down version of the UNIX program
sort.

In Chapter 3 we presented a Shell sort function that would sort an array
of integers, and in Chapter 4 we improved on it with a quicksort. The same
algorithms will work, except that now we have to deal with lines of text, which
are of different lengths, and which, unlike integers, can’t be compared or moved
in a single operation. We need a data representation that will cope efficiently
and conveniently with variable-length text lines.

This is where the array of pointers enters. If the lines to be sorted are stored
end-to-end in one long character array, then each line can be accessed by a
pointer to its first character. The pointers themselves can be stored in an array.
Two lines can be compared by passing their pointers to stremp. When two
out-of-order lines have to be exchanged, the pointers in the pointer array are
exchanged, not the text lines themselves.

F— ()
—— jklmnopgrst |

~— abc -—

]

[

jklmnopgrst |

This eliminates the twin problems of complicated storage management and
high overhead that would go with moving the lines themselves.
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The sorting process has three steps:

read all the lines of input
sort them
print them in order

As usual, it’s best to divide the program into functions that match this natural
division, with the main routine controlling the other functions. Let us defer the
sorting step for a moment, and concentrate on the data structure and the input
and output.

The input routine has to collect and save the characters of each line, and
build an array of pointers to the lines. It will also have to count the number of
input lines, since that information is needed for sorting and printing. Since the
input function can only cope with a finite number of input lines, it can return
some illegal line count like -1 if too much input is presented.

The output routine only has to print the lines in the order in which they
appear in the array of pointers.

#include <stdio.h>
#include <string.h>

#define MAXLINES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void writelines(char *lineptr[], int nlines);

void gsort(char *lineptr[], int left, int right);

/* sort input lines */
main()

{

int nlines; /* number of input lines read */

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort(lineptr, 0, nlines-1);
writelines(lineptr, nlines);
return O;

} else {
printf("error: input too big to sort\n");
return 1;
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#define MAXLEN 1000 /* max length of any input line */
int getline(char *, int);
char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr[], int maxlines)

{
int len, nlines;
char *p, line[MAXLEN];
nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)
if (nlines >= maxlines || (p = alloc(len)) ==
NULL)
return -1;
else {
line[len-1] = '\0'; /* delete newline */
strcpy(p, line);
lineptr[nlines++] = p;
¥
return nlines;
¥

/* writelines: write output lines */
void writelines(char *lineptr[], int nlines)

{
int i;
for (i = 0; i < nlines; i++)
printf("%s\n", lineptr[i]);
}

The function getline is from Section 1.9.
The main new thing is the declaration for lineptr:

char *lineptr[MAXLINES]

says that 1ineptr is an array of MAXLINES elements, each element of which is a
pointer to a char. Thatis, 1ineptr[i]isacharacter pointer, and *1lineptr[i]
is the character it points to, the first character of the i-th saved text line.

Since lineptr is itself the name of an array, it can be treated as a pointer
in the same manner as in our earlier examples, and writelines can be written
instead as

/* writelines: write output lines */
void writelines(char *lineptr[], int nlines)
{
while (nlines-- > 0)
printf("%s\n", *lineptr++);
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Initially *1ineptr points to the first line; each increment advances it to the next
line pointer while nlines is counted down.

With input and output under control, we can proceed to sorting. The quick-
sort from Chapter 4 needs minor changes: the declarations have to be modified,
and the comparison operation must be done by calling strcmp. The algorithm
remains the same, which gives us some confidence that it will still work.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(char *v[], int left, int right)
{

int i, last;
void swap(char *v[], int i, int j);

if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */
swap(v, left, (left + right)/2);
last = left;
for (i = left+1l; i <= right; i++)
if (stremp(v[i], v[left]) < 0)
swap(v, ++last, 1i);
swap(v, left, last);
gsort(v, left, last-1);
gsort(v, last+1l, right);
}
Similarly, the swap routine needs only trivial changes:

void swap(int *px, int *py) /* interchange *px and *py */

{

int temp;

temp = *px;
*PX = *py;
*py = temp;
}
Since any individual element of v (alias 1ineptr) is a character pointer, temp
must be also, so one can be copied to the other.

Exercise 5-7. Rewrite readlines to store lines in an array supplied by main,
rather than calling alloc to maintain storage. How much faster is the
program? [J

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they
are much less used than arrays of pointers. In this section, we will show some
of their properties.
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Consider the problem of date conversion, from day of the month to day
of the year and vice versa. For example, March 1 is the 60th day of a non-
leap year, and the 61st day of a leap year. Let us define two functions to do
the conversions: day_of_year converts the month and day into the day of the
year, and month_day converts the day of the year into the month and day. Since
this latter function computes two values, the month and day arguments will be
pointers:

month day(1988, 60, &m, &d)

sets m to 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of
days in each month (“thirty days hath September ...”). Since the number of
days per month differs for leap years and non-leap years, it’s easier to separate
them into two rows of a two-dimensional array than to keep track of what
happens to February during computation. The array and the functions for
performing the transformations are as follows:

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{o, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
}i

/* day_of_year: set day of year from month & day */
int day_of_ year(int year, int month, int day)

{
int i, leap;
leap = year%4 == 0 && year%1l00 != 0 || year%400 == O0;
for (1 = 1; i < month; i++)
day += daytab[leap][i];
return day;
}

/* month_day: set month, day from day of year */
void month_day(int year, int yearday, int *pmonth, int

*pday)
{
int i, leap;
leap = year%4 == 0 && year%100 != 0 || year%400 == O0;
for (i = 1; yearday > daytab[leap][i]; i++)
yearday -= daytab[leap][i];
*pmonth = i;
*pday = yearday;
¥

Recall that the arithmetic value of a logical expression, such as the one for leap,
is either zero (false) or one (true), so it can be used as a subscript of the array
daytab.
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The array daytab has to be external to both day_of_year and month_day,
so they can both use it. We made it char to illustrate a legitimate use of char
for storing small non-character integers.

daytab is the first two-dimensional array we have dealt with. In C, a two-
dimensional array is really a one-dimensional array, each of whose elements is
an array. Hence subscripts are written as

daytab[i][]] /* [row][col] */
rather than
daytab[i, j] /* WRONG */

Other than this notational distinction, a two-dimensional array can be treated
in much the same way as in other languages. Elements are stored by rows, so
the rightmost subscript, or column, varies fastest as elements are accessed in
storage order.

An array is initialized by a list of initializers in braces; each row of a two-
dimensional array is initialized by a corresponding sub-list. We started the
array daytab with a column of zero so that month numbers can run from the
natural 1 to 12 instead of 0 to 11. Since space is not at a premium here, this is
clearer than adjusting the indices.

If a two-dimensional array is to be passed to a function, the parameter
declaration in the function must include the number of columns; the number
of rows is irrelevant, since what is passed is, as before, a pointer to an array
of rows, where each row is an array of 13 ints. In this particular case, it is a
pointer to objects that are arrays of 13 ints. Thus if the array daytab is to be
passed to a function £, the declaration of £ would be

f(int daytab[2][13]) { ... }
It could also be
f(int daytab[][13]) { ... }
since the number of rows is irrelevant, or it could be
f(int (*daytab)[13]) { ... }
which says that the parameter is a pointer to an array of 13 integers. The paren-

theses are necessary since brackets [ ] have higher precedence than *. Without
parentheses, the declaration

int *daytab[13]
is an array of 13 pointers to integers. More generally, only the first dimension

(subscript) of an array is free; all the others have to be specified.
Section 5.12 has a further discussion of complicated declarations.

Exercise 5-8. There is no error checking in day_of_year oOr month_day.
Remedy this defect. [
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5.8 Initialization of Pointer Arrays

Consider the problem of writing a function month_name(n), which returns
a pointer to a character string containing the name of the n-th month. This
is an ideal application for an internal static array. month_name contains a
private array of character strings, and returns a pointer to the proper one when
called. This section shows how that array of names is initialized.

The syntax is similar to previous initializations:

/* month_name: return name of n-th month */
char *month name(int n)

{
static char *name[] = {
"Illegal month",
"January", "February", "March",
"April", "May", "June",
"July", "August", "September",
"October", "November", "December"
¥i
return (n < 1 || n > 12) ? name[0] : name[n];
¥

The declaration of name, which is an array of character pointers, is the same as
lineptr in the sorting example. The initializer is a list of character strings; each
is assigned to the corresponding position in the array. The characters of the i-th
string are placed somewhere, and a pointer to them is stored in name[i]. Since
the size of the array name is not specified, the compiler counts the initializers
and fills in the correct number.

5.9 Pointers vs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a
two-dimensional array and an array of pointers, such as name in the example
above. Given the definitions

int a[10][20];
int *b[10];

then a[3][4] and b[3][4] are both syntactically legal references to a single
int. But a is a true two-dimensional array: 200 int-sized locations have been
set aside, and the conventional rectangular subscript calculation 20Xrow+col
1s used to find the element a[row][col]. For b, however, the definition only
allocates 10 pointers and does not initialize them; initialization must be done
explicitly, either statically or with code. Assuming that each element of b does
point to a twenty-element array, then there will be 200 ints set aside, plus ten
cells for the pointers. The important advantage of the pointer array is that the
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rows of the array may be of different lengths. That is, each element of b need
not point to a twenty-element vector; some may point to two elements, some
to fifty, and some to none at all.

Although we have phrased this discussion in terms of integers, by far the
most frequent use of arrays of pointers is to store character strings of diverse
lengths, as in the function month_name. Compare the declaration and picture
for an array of pointers:

char *name[] = { "Illegal month", "Jan, "Feb", "Mar" };

name:

| Illegal month\o

with those for a two-dimensional array:

char aname[ J[15] = { "Illegal month", "Jan", "Feb", "Mar" };
aname:
[Illegal monthvo Janio Febuo Mar\o
0 15 30 45

Exercise 5-9. Rewrite the routines day_of_year and month_day with pointers
instead of indexing. [

5.10 Command-line Arguments

In environments that support C, there is a way to pass command-line ar-
guments or parameters to a program when it begins executing. When main is
called, it is called with two arguments. The first (conventionally called arge, for
argument count) is the number of command-line arguments the program was
invoked with; the second (argv, for argument vector) is a pointer to an array of
character strings that contain the arguments, one per string. We customarily
use multiple levels of pointers to manipulate these character strings.

The simplest illustration is the program echo, which echoes its command-
line arguments on a single line, separated by blanks. That is, the command

echo hello, world

prints the output
hello, world
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By convention, argv[0] is the name by which the program was invoked, so
argc is at least 1. If argc is 1, there are no command-line arguments after the
program name. In the example above, arge is 3, and argv[0], argv[1], and
argv[2] are "echo", "hello, ", and "world" respectively. The first optional
argument is argv[1] and the last is argv[argce-1]; additionally, the standard
requires that argv[argc] be a null pointer.

argv:

The first version of echo treats argv as an array of character pointers:

#include <stdio.h>

/* echo command-line arguments; 1lst version */
main(int argc, char *argv[])

{
int i;
for (i = 1; i < argc; i++)
printf("%s%s", argv[i], (i < argec-1) ? " " : "");
printf("\n");
return O;
}

Since argv is a pointer to an array of pointers, we can manipulate the pointer
rather than index the array. This next variation is based on incrementing argv,
which is a pointer to pointer to char, while arge 1s counted down:

#include <stdio.h>

/* echo command-line arguments; 2nd version */
main(int argc, char *argv[])

{
while (--argc > 0)
printf("%s%s", *++argv, (argc > 1) ? " " : "");
printf("\n");
return 0;
}

Since argv is a pointer to the beginning of the array of argument strings, in-

crementing it by 1 (++argv) makes it point at the original argv[1] instead

of argv[0]. Each successive increment moves it along to the next argument;

*argv is then the pointer to that argument. At the same time, argc is decre-

mented; when it becomes zero, there are no arguments left to print.
Alternatively, we could write the printf statement as
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printf((argc > 1) ? "%s " : "%s", *++argv);

This shows that the format argument of printf can be an expression too.

As a second example, let us make some enhancements to the pattern-
finding program from Section 4.1. If you recall, we wired the search pattern
deep into the program, an obviously unsatisfactory arrangement. Following
the lead of the UNIX program grep, let us change the program so the pattern
to be matched is specified by the first argument on the command line.

#include <stdio.h>

#include <string.h>
#define MAXLINE 1000

int getline(char *1line, int max);

/* find: print lines that match pattern from 1st arg */
main(int argc, char *argv[])

{
char line[MAXLINE];
int found = 0;
if (argc != 2)
printf("Usage: find pattern\n");
else
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1l]) != NULL) {
printf("%s", line);
found++;
}
return found;
}

The standard library function strstr(s, t) returns a pointer to the first occur-
rence of the string t in the string s, or NULL if there is none. It is declared in
<string.h>.

The model can now be elaborated to illustrate further pointer constructions.
Suppose we want to allow two optional arguments. One says “print all lines
except those that match the pattern;” the second says “precede each printed
line by its line number.”

A common convention for C programs on UNIX systems is that an argu-
ment that begins with a minus sign introduces an optional flag or parameter.
If we choose -x (for “except”) to signal the inversion, and -n (“number”) to
request line numbering, then the command

find -x -n pattern
will print each line that doesn’t match the pattern, preceded by its line number.

Optional arguments should be permitted in any order, and the rest of the
program should be independent of the number of arguments that were present.
Furthermore, it is convenient for users if option arguments can be combined,
as in
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find -nx pattern

Here is the program:

#include <stdio.h>
#include <string.h>
#define MAXLINE 1000

int getline(char *1line, int max);

/* find: print lines that match pattern from 1st arg */
main(int argc, char *argv[])

{
char line[MAXLINE];
long lineno = 0;
int ¢, except = 0, number = 0, found = 0;
while (--argc > 0 && (*++argv)[0] == '-")
while (¢ = *++argv[O0])
switch (c¢) {
case 'x':
except = 1;
break;
case 'n':
number = 1;
break;
default:
printf("find: illegal option %c\n", c);
argc = 0;
found = -1;
break;
}
if (arge != 1)
printf("Usage: find -x -n pattern\n");
else
while (getline(line, MAXLINE) > 0) {
lineno++;
if ((strstr(line, *argv) != NULL) != except) {
if (number)
printf("%1d:", lineno);
printf("%s", line);
found++;
¥
}
return found;
}

arge 1s decremented and argv is incremented before each optional argu-
ment. At the end of the loop, if there are no errors, arge tells how many ar-
guments remain unprocessed and argv points to the first of these. Thus argc
should be 1 and *argv should point at the pattern. Notice that *++argv is a
pointer to an argument string, so (*++argv)[ o] is its first character. (An alter-
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nate valid form would be **++argv.) Because [ ] binds tighter than * and ++,
the parentheses are necessary; without them the expression would be taken as
*++(argv[0]). In fact, that is what we used in the inner loop, where the task
1s to walk along a specific argument string. In the inner loop, the expression
*++argv[ 0] increments the pointer argv[0]!

It is rare that one uses pointer expressions more complicated than these;
in such cases, breaking them into two or three steps will be more intuitive.

Exercise 5-10. Write the program expr, which evaluates a reverse Polish ex-
pression from the command line, where each operator or operand is a separate
argument. For example,

exXpr 2 3 4 + *

evaluates 2 X (3+4). J

Exercise 5-11. Modify the programs entab and detab (written as exercises
in Chapter 1) to accept a list of tab stops as arguments. Use the default tab
settings if there are no arguments. [

Exercise 5-12. Extend entab and detab to accept the shorthand

entab -m +n

to mean tab stops every n columns, starting at column m. Choose convenient
(for the user) default behavior. [J

Exercise 5-13. Write the program tail, which prints the last z lines of its input.
By default, # is 10, let us say, but it can be changed by an optional argument,
so that

tail -n

prints the last n lines. The program should behave rationally no matter how
unreasonable the input or the value of n. Write the program so it makes the
best use of available storage; lines should be stored as in the sorting program
of Section 5.6, not in a two-dimensional array of fixed size. [

5.11 Pointers to Functions

In C, a function itself is not a variable, but it is possible to define pointers
to functions, which can be assigned, placed in arrays, passed to functions, re-
turned by functions, and so on. We will illustrate this by modifying the sorting
procedure written earlier in this chapter so that if the optional argument -n is
given, it will sort the input lines numerically instead of lexicographically.
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A sort often consists of three parts—a comparison that determines the or-
dering of any pair of objects, an exchange that reverses their order, and a sort-
ing algorithm that makes comparisons and exchanges until the objects are in
order. The sorting algorithm is independent of the comparison and exchange
operations, so by passing different comparison and exchange functions to it,
we can arrange to sort by different criteria. This is the approach taken in our
new sort.

Lexicographic comparison of two lines is done by stremp, as before; we
will also need a routine numemp that compares two lines on the basis of numeric
value and returns the same kind of condition indication as stremp does. These
functions are declared ahead of main and a pointer to the appropriate one is
passed to gsort. We have skimped on error processing for arguments, so as to
concentrate on the main issues.

#include <stdio.h>
#include <string.h>

#define MAXLINES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void writelines(char *lineptr[], int nlines);

void gsort(void *lineptr[], int left, int right,
int (*comp)(void *, void *));
int numcmp(char *, char *);

/* sort input lines */
main(int argc, char *argv[])

{
int nlines; /* number of input lines read */
int numeric = 0; /* 1 if numeric sort */
if (argec > 1 && strcmp(argv[1l], "-n") == 0)
numeric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort((void **) lineptr, 0, nlines-1,
(int (*)(void*,void*))(numeric ? numcmp : strcmp));
writelines(lineptr, nlines);
return O;
} else {
printf("input too big to sort\n");
return 1;
¥
}

In the call to gsort, stremp and numemp are addresses of functions. Since they
are known to be functions, the & operator is not necessary, in the same way that
it is not needed before an array name.
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We have written gsort so it can process any data type, not just charac-
ter strings. As indicated by the function prototype, gsort expects an array of
pointers, two integers, and a function with two pointer arguments. The generic
pointer type void = is used for the pointer arguments. Any pointer can be cast
to void * and back again without loss of information, so we can call gsort
by casting arguments to void *. The elaborate cast of the function argument
casts the arguments of the comparison function. These will generally have no
effect on actual representation, but assure the compiler that all is well.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(char *v[], int left, int right)
{

int i, last;
void swap(char *v[], int i, int j);

if (left >= right) /* do nothing if array contains */
return; /* fewer than two elements */
swap(v, left, (left + right)/2);
last = left;
for (i = left+1; i <= right; i++)
if (stremp(v[i], v[left]) < 0)
swap(v, ++last, 1i);
swap(v, left, last);
gsort(v, left, last-1);
gsort(v, last+1l, right);
}

The declarations should be studied with some care. The fourth parameter of
qsortiS

int (*comp)(void *, wvoid *)
which says that comp is a pointer to a function that has two void * arguments

and returns an int.
The use of comp in the line

if ((*comp)(v[i], v[left]) < 0)
1s consistent with the declaration: comp is a pointer to a function, *comp is the
function, and

(*comp)(v[i], v[left])
is the call to it. The parentheses are needed so the components are correctly
associated; without them,

int *comp(void *, void *) /* WRONG */
says that comp is a function returning a pointer to an int, which is very different.

We have already shown strcmp, which compares two strings. Here is

numcmp, Which compares two strings on a leading numeric value, computed by
calling atof:
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#include <stdlib.h>

/* numcmp: compare sl and s2 numerically */
int numcmp(char *sl1, char *s2)

{
double v1, v2;

vl = atof(sl);
v2 = atof(s2);
if (vl < v2)
return -1;
else if (v1 > v2)
return 1;
else
return O;

}

The swap function, which exchanges two pointers, is identical to what we
presented earlier in the chapter, except that the declarations are changed to
void *.

/* swap: interchange v[i] and v[j] */
void swap(char *v[], int i, int j)

{
char *temp;
temp = v[i];
vii] = v[31;
v[j] = temp;
}

A variety of other options can be added to the sorting program; some
make challenging exercises.

Exercise 5-14. Modify the sort program to handle a -r flag, which indicates
sorting in reverse (decreasing) order. Be sure that -r works with -n. [J

Exercise 5-15. Add the option -f to fold upper and lower case together, so that
case distinctions are not made during sorting; for example, a and A compare
equal. [J

Exercise 5-16. Add the -d (“directory order”) option, which makes compar-
1sons only on letters, numbers and blanks. Make sure it works in conjunction
with -£. [J

Exercise 5-17. Add a field-handling capability, so sorting may be done on
fields within lines, each field sorted according to an independent set of options.
(The index for this book was sorted with -df for the index category and -n for
the page numbers.) [
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5.12 Complicated Declarations

C is sometimes castigated for the syntax of its declarations, particularly
ones that involve pointers to functions. The syntax is an attempt to make the
declaration and the use agree; it works well for simple cases, but it can be con-
fusing for the harder ones, because declarations cannot be read left to right,
and because parentheses are over-used. The difference between

int *£f(); /* f£: function returning pointer to int */
and
int (*pf)(); /* pf: pointer to function returning int */

illustrates the problem: * is a prefix operator and it has lower precedence than
(), so parentheses are necessary to force the proper association.

Although truly complicated declarations rarely arise in practice, it is impor-
tant to know how to understand them, and, if necessary, how to create them.
One good way to synthesize declarations is in small steps with typedef, which
is discussed in Section 6.7. As an alternative, in this section we will present
a pair of programs that convert from valid C to a word description and back
again. The word description reads left to right.

The first, dc1, is the more complex. It converts a C declaration into a word
description, as in these examples:

char **argv
argv: pointer to pointer to char
int (*daytab)[13]
daytab: pointer to array[13] of int
int *daytab[13]
daytab: array[13] of pointer to int
void *comp()
comp: function returning pointer to void
void (*comp)()
comp: pointer to function returning void
char (*(*x())[1)O)
x: function returning pointer to array[] of
pointer to function returning char
char (*(*x[3])())[5]
x: array[3] of pointer to function returning
pointer to array[5] of char

dclis based on the grammar that specifies a declarator, which is spelled out
precisely in Appendix A, Section 8.5; this is a simplified form:

del: optional *’s direct-dcl
direct-dcl:  name
(dcl)y

direct-dcl ()
direct-dcl[ optional size]
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In words, a dcl is a direct-dcl, perhaps preceded by *’s. A direct-dcl is a name,
or a parenthesized dcl, or a direct-dcl followed by parentheses, or a direct-dcl
followed by brackets with an optional size.

This grammar can be used to parse declarations. For instance, consider
this declarator:

(*pfal])()

pfa will be identified as a name and thus as a direct-dcl. Then pfa[ ] i1s also a
direct-dcl. Then *pfa[ ] 1s a recognized as a dcl, so (*pfa[]) is a direct-dcl. Then
(*pfa[])() is a direct-dcl and thus a dcl. We can also illustrate the parse with a
parse tree like this (where direct-dcl has been abbreviated to dir-dcl):

( * pfa L] ) O

name

dir-dcl

dir-dcl

dcl

dir-dcl

dir-dcl

dcl

The heart of the dcl program is a pair of functions, del and dirdel, that
parse a declaration according to this grammar. Because the grammar is recur-
sively defined, the functions call each other recursively as they recognize pieces
of a declaration; the program is called a recursive-descent parser.

/* dcl: parse a declarator */
void dcl(void)

{
int ns;
for (ns = 0; gettoken() == "*'; ) /* count *'s */
ns++;
dirdcl();
while (ns-- > 0)
strcat(out, " pointer to");
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/* dirdcl: parse a direct declarator */
void dirdcl(void)

{
int type;
if (tokentype == '"(') { /* ( del ) */
dcl();
if (tokentype != ')')
printf("error: missing )\n");
} else if (tokentype == NAME) /* variable name */
strcpy(name, token);
else
printf("error: expected name or (dcl)\n");
while ((type=gettoken()) == PARENS || type ==
BRACKETS)
if (type == PARENS)
strcat(out, " function returning");
else {
strcat(out, " array");
strcat(out, token);
strcat(out, " of");
}
}

Since the programs are intended to be illustrative, not bullet-proof, there
are significant restrictions on dcl. It can only handle a simple data type like
char or int. It does not handle argument types in functions, or qualifiers like
const. Spurious blanks confuse it. It doesn’t do much error recovery, so invalid
declarations will also confuse it. These improvements are left as exercises.

Here are the global variables and the main routine:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define MAXTOKEN 100
enum { NAME, PARENS, BRACKETS };

void dcl(void);
void dirdcl(void);

int gettoken(void);

int tokentype; /* type of last token */

char token[MAXTOKEN]; /* last token string */

char name[MAXTOKEN]; /* identifier name */

char datatype[MAXTOKEN]; /* data type = char, int, etc. */
char out[1000]; /* output string */
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main() /* convert declaration to words */

{
while (gettoken() != EOF) { /* 1lst token on line */
strcpy(datatype, token); /* is the datatype */
out[0] = '\0"';
dcl(); /* parse rest of line */
if (tokentype != '\n')
printf("syntax error\n");
printf("%s: %s %s\n", name, out, datatype);
}
return O;
¥

The function gettoken skips blanks and tabs, then finds the next token in
the input; a “token” is a name, a pair of parentheses, a pair of brackets perhaps
including a number, or any other single character.

int gettoken(void) /* return next token */
{

int ¢, getch(void);

void ungetch(int);

char *p = token;

while ((¢ = getch()) == " ' || ¢ == "\t")

if (c == "(') {
if ((c = getch()) == ")") {
strcpy(token, "()");
return tokentype = PARENS;
} else {
ungetch(c);
return tokentype

l(l;

}
} else if (¢ == '["') {
for (*p++ = c; (*p++

getch()) != "]1"'; )

*p = '\0";
return tokentype = BRACKETS;
} else if (isalpha(c)) {
for (*p++ = c¢; isalnum(c = getch()); )
*p++ = C;
*p = '\0';
ungetch(c);
return tokentype
} else
return tokentype

NAME ;

1l
Q

}

getch and ungetch were discussed in Chapter 4.
Going in the other direction is easier, especially if we do not worry about
generating redundant parentheses. The program undcl converts a word de-
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scription like “x is a function returning a pointer to an array of pointers to
functions returning char,” which we will express as

x () * [1* () char
to

char (*(*x())[1)O)

The abbreviated input syntax lets us reuse the gettoken function. undcl also
uses the same external variables as del does.

/* undcl: convert word description to declaration */
main()
{

int type;

char temp[MAXTOKEN];

while (gettoken() != EOF) {
strcpy(out, token);
while ((type = gettoken()) != '\n')

if (type == PARENS || type == BRACKETS)
strcat(out, token);

else if (type == '*') {
sprintf(temp, "(*%s)", out);
strcpy(out, temp);

} else if (type == NAME) {
sprintf(temp, "%s %s", token, out);
strcpy(out, temp);

} else
printf("invalid input at %s\n", token);

printf("%s\n", out);
}

return O;

Exercise 5-18. Make dc1 recover from input errors. [J

Exercise 5-19. Modify undcl so that it does not add redundant parentheses to
declarations. [J

Exercise 5-20. Expand dcl to handle declarations with function argument
types, qualifiers like const, and so on. [J



CHAPTER6: Structures

A structure is a collection of one or more variables, possibly of different
types, grouped together under a single name for convenient handling. (Struc-
tures are called “records” in some languages, notably Pascal.) Structures help
to organize complicated data, particularly in large programs, because they per-
mit a group of related variables to be treated as a unit instead of as separate
entities.

One traditional example of a structure is the payroll record: an employee is
described by a set of attributes such as name, address, social security number,
salary, etc. Some of these in turn could be structures: a name has several com-
ponents, as does an address and even a salary. Another example, more typical
for C, comes from graphics: a point is a pair of coordinates, a rectangle is a
pair of points, and so on.

The main change made by the ANSI standard is to define structure
assignment—structures may be copied and assigned to, passed to functions,
and returned by functions. This has been supported by most compilers for
many years, but the properties are now precisely defined. Automatic structures
and arrays may now also be initialized.

6.1 Basics of Structures

Let us create a few structures suitable for graphics. The basic object is a
point, which we will assume has an x coordinate and a y coordinate, both inte-
gers.

127
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The two components can be placed in a structure declared like this:

struct point {
int x;
int y;

}i

The keyword struct introduces a structure declaration, which is a list of
declarations enclosed in braces. An optional name called a structure tag may
follow the word struct (as with point here). The tag names this kind of struc-
ture, and can be used subsequently as a shorthand for the part of the declara-
tion in braces.

The variables named in a structure are called members. A structure mem-
ber or tag and an ordinary (i.e., non-member) variable can have the same name
without conflict, since they can always be distinguished by context. Further-
more, the same member names may occur in different structures, although as
a matter of style one would normally use the same names only for closely re-
lated objects.

A struct declaration defines a type. The right brace that terminates the
list of members may be followed by a list of variables, just as for any basic type.
That s,

struct { ... } x, y, z;
is syntactically analogous to
int x, vy, z;

in the sense that each statement declares x, y and z to be variables of the named
type and causes space to be set aside for them.

A structure declaration that is not followed by a list of variables reserves
no storage; it merely describes a template or the shape of a structure. If the dec-
laration is tagged, however, the tag can be used later in definitions of instances
of the structure. For example, given the declaration of point above,

struct point pt;

defines a variable pt which is a structure of type struct point. A structure
can be initialized by following its definition with a list of initializers, each a
constant expression, for the members:

struct point maxpt = { 320, 200 };

An automatic structure may also be initialized by assignment or by calling a
function that returns a structure of the right type.

A member of a particular structure is referred to in an expression by a
construction of the form

structure-name . member

The structure member operator " . " connects the structure name and the mem-
ber name. To print the coordinates of the point pt, for instance,
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printf("%d,%d", pt.x, pt.y);

or to compute the distance from the origin (0,0) to pt,
double dist, sqrt(double);

dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y);

Structures can be nested. One representation of a rectangle is a pair of
points that denote the diagonally opposite corners:

pt2

ptl

struct rect {
struct point ptl;
struct point pt2;
}i

The rect structure contains two point structures. If we declare screen as

struct rect screen;

then

screen.ptl.x

refers to the x coordinate of the pt1 member of screen.

6.2 Structures and Functions

The only legal operations on a structure are copying it or assigning to it
as a unit, taking its address with &, and accessing its members. Copy and as-
signment include passing arguments to functions and returning values from
functions as well. Structures may not be compared. A structure may be initial-
ized by a list of constant member values; an automatic structure may also be
initialized by an assignment.

Let us investigate structures by writing some functions to manipulate
points and rectangles. There are at least three possible approaches: pass
components separately, pass an entire structure, or pass a pointer to it. Each
has its good points and bad points.

The first function, makepoint, will take two integers and return a point
structure:
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/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y)

{
struct point temp;
temp.x = X;
temp.y = y;
return temp;
¥

Notice that there is no conflict between the argument name and the member
with the same name; indeed the re-use of the names stresses the relationship.

makepoint can now be used to initialize any structure dynamically, or to
provide structure arguments to a function:

struct rect screen;
struct point middle;
struct point makepoint(int, int);

screen.ptl = makepoint(0, 0);

screen.pt2 = makepoint(XMAX, YMAX);

middle = makepoint((screen.ptl.x + screen.pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);

The next step is a set of functions to do arithmetic on points. For instance,

/* addpoint: add two points */
struct point addpoint(struct point pl, struct point p2)

{
pPl.x += p2.X;
pl.y += p2.y;
return pl;

¥

Here both the arguments and the return value are structures. We incremented
the components in p1 rather than using an explicit temporary variable to em-
phasize that structure parameters are passed by value like any others.

As another example, the function ptinrect tests whether a point is inside
a rectangle, where we have adopted the convention that a rectangle includes its
left and bottom sides but not its top and right sides:

/* ptinrect: return 1 if p in r, 0 if not */
int ptinrect(struct point p, struct rect r)

{
return p.x >= r.ptl.x && p.x < r.pt2.x

&& p.y >= r.ptl.y && p.y < r.pt2.y;
}

This assumes that the rectangle is represented in a standard form where the pt1
coordinates are less than the pt2 coordinates. The following function returns
a rectangle guaranteed to be in canonical form:
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#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

/* canonrect: canonicalize coordinates of rectangle */
struct rect canonrect(struct rect r)
{

struct rect temp;

temp.ptl.x = min(r.ptl.x, r.pt2.x);

temp.ptl.y = min(r.ptl.y, r.pt2.y);

temp.pt2.x = max(r.ptl.x, r.pt2.x);

temp.pt2.y = max(r.ptl.y, r.pt2.y);

return temp;

}

If a large structure is to be passed to a function, it is generally more efficient
to pass a pointer than to copy the whole structure. Structure pointers are just
like pointers to ordinary variables. The declaration

struct point *pp;

says that pp is a pointer to a structure of type struct point. If pp points to a
point structure, .pp is the structure, and (*pp).x and (*pp).y are the members.
To use pp, we might write, for example,

struct point origin, *pp;
pp = &origin;
printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);

The parentheses are necessary in (*pp).x because the precedence of the struc-
ture member operator . is higher than .. The expression .pp.x means . (pp.x),
which is illegal here because x is not a pointer.

Pointers to structures are so frequently used that an alternative notation is
provided as a shorthand. If p is a pointer to a structure, then

p->member-of-structure

refers to the particular member. (The operator -> is a minus sign immediately
followed by >.) So we could write instead

printf("origin is (%d,%d)\n", pp->x, pp->V);
Both . and -> associate from left to right, so if we have
struct rect r, *rp = &r;
then these four expressions are equivalent:

r.ptl.x
rp->ptl.x
(r.ptl).x
(rp->ptl).x



132 CHAPTER 6. STRUCTURES

The structure operators . and ->, together with () for function calls and
[ ] for subscripts, are at the top of the precedence hierarchy and thus bind very
tightly. For example, given the declaration

struct {
int len;
char *str;
} *p;
then

++p->len

increments len, not p, because the implied parenthesization is ++(p->1len).
Parentheses can be used to alter the binding: (++p)->1len increments p before
accessing len, and (p++)->1len increments p afterward. (This last set of paren-
theses is unnecessary.)

In the same way, .p->str fetches whatever str points to; .p->str++ in-
crements str after accessing whatever it points to (just like .s++); (*p->str)++
increments whatever str points to; and .p++->str increments p after accessing
whatever str points to.

6.3 Arrays of Structures

Consider writing a program to count the occurrences of each C keyword.
We need an array of character strings to hold the names, and an array of inte-
gers for the counts. One possibility is to use two parallel arrays, keyword and
keycount, as in

char *keyword[NKEYS];
int keycount[NKEYS];

But the very fact that the arrays are parallel suggests a different organization,
an array of structures. Each keyword entry is a pair:

char *word;
int count;

and there is an array of pairs. The structure declaration

struct key {
char *word;
int count;

} keytab[NKEYS];

declares a structure type key, defines an array keytab of structures of this type,
and sets aside storage for them. Each element of the array is a structure. This
could also be written
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struct key {
char *word;
int count;

}i
struct key keytab[NKEYS];

Since the structure keytab contains a constant set of names, it is easiest
to make it an external variable and initialize it once and for all when it is de-
fined. The structure initialization is analogous to earlier ones—the definition
is followed by a list of initializers enclosed in braces:

struct key {
char *word;
int count;

} keytab[] = {
"auto", O,
"break", O,
"case", O,
"char", O,
"const", O,
"continue", O,
"default", O,
/* ... */
"unsigned", O,
"void", O,
"volatile", O,
"while", 0

};

The initializers are listed in pairs corresponding to the structure members. It
would be more precise to enclose initializers for each “row” or structure in
braces, as in

{ "auto", 0 },
{ "break", 0 },
{ "case", 0 },

but the inner braces are not necessary when the initializers are simple variables
or character strings, and when all are present. As usual, the number of entries
in the array keytab will be computed if initializers are present and the [ ] is left
empty.

The keyword-counting program begins with the definition of keytab. The
main routine reads the input by repeatedly calling a function getword that
fetches one word at a time. Each word is looked up in keytab with a version
of the binary search function that we wrote in Chapter 3. The list of keywords
must be sorted in increasing order in the table.
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#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define MAXWORD 100

int getword(char *, int);
int binsearch(char *, struct key *, int);

/* count C keywords */
main()
{

int n;

char word[MAXWORD];

while (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))

if ((n = binsearch(word, keytab, NKEYS)) >= 0)

keytab[n].count++;
for (n = 0; n < NKEYS; n++)
if (keytab[n].count > 0)
printf("%4d %s\n",
keytab[n].count, keytab[n].word);
return O;

/* binsearch: find word in tab[0]...tab[n-1] */
int binsearch(char *word, struct key tab[], int n)
{

int cond;

int low, high, mid;

low = 0;

high = n - 1;

while (low <= high) {
mid = (low+high) / 2;

if ((cond = strcmp(word, tab[mid].word)) < 0)

high = mid - 1;
else if (cond > 0)
low = mid + 1;
else
return mid;
}

return -1;

}

We will show the function getword in a moment; for now it suffices to say that
each call to getword finds a word, which is copied into the array named as its

first argument.

The quantity NKEYS is the number of keywords in keytab. Although we
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could count this by hand, it’s a lot easier and safer to do it by machine, espe-
cially if the list is subject to change. One possibility would be to terminate the
list of initializers with a null pointer, then loop along keytab until the end is
found.

But this is more than is needed, since the size of the array is completely
determined at compile time. The size of the array is the size of one entry times
the number of entries, so the number of entries is just

size of keytab / size of struct key

C provides a compile-time unary operator called sizeof that can be used to
compute the size of any object. The expressions

sizeof object

and

sizeof (type name)

yield an integer equal to the size of the specified object or type in bytes. (Strictly,
sizeof produces an unsigned integer value whose type, size_t, is defined in
the header <stddef.h>.) An object can be a variable or array or structure. A
type name can be the name of a basic type like int or double, or a derived type
like a structure or a pointer.

In our case, the number of keywords is the size of the array divided by the
size of one element. This computation is used in a #define statement to set the
value of NKEYS:

#define NKEYS (sizeof keytab / sizeof(struct key))

Another way to write this is to divide the array size by the size of a specific
element:

#define NKEYS (sizeof keytab / sizeof keytab[O0])

This has the advantage that it does not need to be changed if the type changes.

A sizeof can not be used in a #if line, because the preprocessor does not
parse type names. But the expression in the #define is not evaluated by the
preprocessor, so the code here is legal.

Now for the function getword. We have written a more general getword
than is necessary for this program, but it is not complicated. getword fetches
the next “word” from the input, where a word is either a string of letters and dig-
its beginning with a letter, or a single non-white space character. The function
value is the first character of the word, or EoF for end of file, or the character
itself if it is not alphabetic.
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/* getword: get next word or character from input */
int getword(char *word, int lim)

{
int ¢, getch(void);
void ungetch(int);
char *w = word;
while (isspace(c = getch()))
if (¢ != EOF)
*wW++ = C;
if (!isalpha(c)) {
*w = "\0';
return c;
}
for ( ; --1lim > 0; w++)
if (!isalnum(*w = getch())) {
ungetch(*w);
break;
¥
*w o= '\0';
return word[O0];
¥

getword uses the getch and ungetch that we wrote in Chapter 4. When the
collection of an alphanumeric token stops, getword has gone one character
too far. The call to ungetch pushes that character back on the input for the
next call. getword also uses isspace to skip white space, isalpha to identify
letters, and isalnum to identify letters and digits; all are from the standard
header <ctype.h>.

Exercise 6-1. Our version of getword does not properly handle underscores,
string constants, comments, or preprocessor control lines. Write a better ver-
sion. [J

6.4 Pointers to Structures

To illustrate some of the considerations involved with pointers to and ar-
rays of structures, let us write the keyword-counting program again, this time
using pointers instead of array indices.

The external declaration of keytab need not change, but main and
binsearch do need modification.
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#include <stdio.h>
#include <ctype.h>
#include <string.h>
#define MAXWORD 100

int getword(char *, int);
struct key *binsearch(char *, struct key *, int);

/* count C keywords; pointer version */
main()
{

char word[MAXWORD];

struct key *p;

while (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
if ((p=binsearch(word, keytab, NKEYS)) !=
NULL)
p->count++;
for (p = keytab; p < keytab + NKEYS; p++)
if (p->count > 0)
printf("%4d %s\n", p->count, p->word);
return O;

}

/* binsearch: find word in tab[0]...tab[n-1] */
struct key *binsearch(char *word, struct key *tab, int n)

{

int cond;

struct key *low = &tab[0];
struct key *high = &tab[n];
struct key *mid;

while (low < high) {

mid = low + (high-low) / 2;

if ((cond = strcmp(word, mid->word)) < 0)
high = mid;

else if (cond > 0)
low = mid + 1;

else
return mid;

}
return NULL;

}

There are several things worthy of note here. First, the declaration of
binsearch must indicate that it returns a pointer to struct key instead of
an integer; this is declared both in the function prototype and in binsearch. If
binsearch finds the word, it returns a pointer to it; if it fails, it returns NULL.

Second, the elements of keytab are now accessed by pointers. This requires
significant changes in binsearch.
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The initializers for 1ow and high are now pointers to the beginning and just
past the end of the table.
The computation of the middle element can no longer be simply

mid = (low+high) / 2; /* WRONG */

because the addition of two pointers is illegal. Subtraction is legal, however, so
high-low is the number of elements, and thus

mid = low + (high-low) / 2;

sets mid to point to the element halfway between 1ow and high.

The most important change is to adjust the algorithm to make sure that it
does not generate an illegal pointer or attempt to access an element outside the
array. The problem is that stab[-1] and &tab[n] are both outside the limits
of the array tab. The former is strictly illegal, and it is illegal to dereference the
latter. The language definition does guarantee, however, that pointer arithmetic
that involves the first element beyond the end of an array (that is, stab[n]) will
work correctly.

In main we wrote

for (p = keytab; p < keytab + NKEYS; p++)

If p is a pointer to a structure, arithmetic on p takes into account the size of the
structure, so p++ increments p by the correct amount to get the next element of
the array of structures, and the test stops the loop at the right time.

Don’t assume, however, that the size of a structure is the sum of the sizes
of its members. Because of alignment requirements for different objects, there
may be unnamed “holes” in a structure. Thus, for instance, if a char is one byte
and an int four bytes, the structure

struct {
char c;
int 1i;
Y

might well require eight bytes, not five. The sizeof operator returns the proper
value.

Finally, an aside on program format: when a function returns a compli-
cated type like a structure pointer, as in

struct key *binsearch(char *word, struct key *tab, int n)

the function name can be hard to see, and to find with a text editor. Accordingly
an alternate style is sometimes used:

struct key *
binsearch(char *word, struct key *tab, int n)

This is a matter of personal taste; pick the form you like and hold to it.
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6.5 Self-referential Structures

Suppose we want to handle the more general problem of counting the oc-
currences of all the words in some input. Since the list of words isn’t known
in advance, we can’t conveniently sort it and use a binary search. Yet we can’t
do a linear search for each word as it arrives, to see if it’s already been seen;
the program would take too long. (More precisely, its running time is likely to
grow quadratically with the number of input words.) How can we organize the
data to cope efficiently with a list of arbitrary words?

One solution is to keep the set of words seen so far sorted at all times,
by placing each word into its proper position in the order as it arrives. This
shouldn’t be done by shifting words in a linear array, though—that also takes
too long. Instead we will use a data structure called a binary tree.

The tree contains one “node” per distinct word; each node contains

a pointer to the text of the word

a count of the number of occurrences
a pointer to the left child node

a pointer to the right child node

No node may have more than two children; it might have only zero or one.

The nodes are maintained so that at any node the left subtree contains only
words that are lexicographically less than the word at the node, and the right
subtree contains only words that are greater. This is the tree for the sentence
“now is the time for all good men to come to the aid of their party”, as built by
inserting each word as it is encountered:

now
N
1S the
/ O\
for men of time

N NN
/all\ good  party their to

aid come

To find out whether a new word is already in the tree, start at the root and com-
pare the new word to the word stored at that node. If they match, the question
is answered affirmatively. If the new word is less than the tree word, continue
searching at the left child, otherwise at the right child. If there is no child in
the required direction, the new word is not in the tree, and in fact the empty
slot is the proper place to add the new word. This process is recursive, since
the search from any node uses a search from one of its children. Accordingly,
recursive routines for insertion and printing will be most natural.

Going back to the description of a node, it is conveniently represented as a
structure with four components:
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struct tnode { /* the tree node: */
char *word; /* points to the text */
int count; /* number of occurrences */

struct tnode *left; /* left child */
struct tnode *right; /* right child */
Y

This recursive declaration of a node might look chancy, but it’s correct. It is
illegal for a structure to contain an instance of itself, but

struct tnode *left;

declares 1eft to be a pointer to a tnode, not a tnode itself.
Occasionally, one needs a variation of self-referential structures: two struc-
tures that refer to each other. The way to handle this is:

struct t {

struct s *p; /* p points to an s */

Y
struct s {

struct t *q; /* q points to a t */
}i

The code for the whole program is surprisingly small, given a handful of
supporting routines like getword that we have already written. The main rou-
tine reads words with getword and installs them in the tree with addtree.

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);

int getword(char *, int);

/* word frequency count */
main()
{
struct tnode *root;
char word[MAXWORD];

root = NULL;
while (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
root = addtree(root, word);
treeprint(root);
return O;
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The function addtree is recursive. A word is presented by main to the top
level (the root) of the tree. At each stage, that word is compared to the word
already stored at the node, and is percolated down to either the left or right
subtree by a recursive call to addtree. Eventually the word either matches
something already in the tree (in which case the count is incremented), or a
null pointer is encountered, indicating that a node must be created and added
to the tree. If a new node is created, addtree returns a pointer to it, which is
installed in the parent node.

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct tnode *addtree(struct tnode *p, char *w)

{

int cond;

if (p == NULL) { /* a new word has arrived */
p = talloc(); /* make a new node */
p->word = strdup(w);
p->count = 1;
p—->left = p->right = NULL;

} else if ((cond = strcmp(w, p->word)) == 0)
p->count++; /* repeated word */

else if (cond < 0) /* less than into left subtree */
p->left = addtree(p->left, w);

else /* greater than into right subtree */
p->right = addtree(p->right, w);

return p;

Storage for the new node is fetched by a routine talloc, which returns
a pointer to a free space suitable for holding a tree node, and the new word
is copied to a hidden place by strdup. (We will discuss these routines in a
moment.) The count is initialized, and the two children are made null. This
part of the code is executed only at the leaves of the tree, when a new node is
being added. We have (unwisely) omitted error checking on the values returned
by strdup and talloc.

treeprint prints the tree in sorted order; at each node, it prints the left
subtree (all the words less than this word), then the word itself, then the right
subtree (all the words greater). If you feel shaky about how recursion works,
simulate treeprint as it operates on the tree shown above.



142 CHAPTER 6. STRUCTURES

/* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)

{
if (p != NULL) {
treeprint(p->left);
printf("%4d %s\n", p->count, p->word);
treeprint(p->right);
}
}

A practical note: if the tree becomes “unbalanced” because the words don’t
arrive in random order, the running time of the program can grow too much. As
a worst case, if the words are already in order, this program does an expensive
simulation of linear search. There are generalizations of the binary tree that do
not suffer from this worst-case behavior, but we will not describe them here.

Before we leave this example, it is also worth a brief digression on a prob-
lem related to storage allocators. Clearly it’s desirable that there be only one
storage allocator in a program, even though it allocates different kinds of ob-
jects. But if one allocator is to process requests for, say, pointers to chars and
pointers to struct tnodes, two questions arise. First, how does it meet the
requirement of most real machines that objects of certain types must satisfy
alignment restrictions (for example, integers often must be located at even ad-
dresses)? Second, what declarations can cope with the fact that an allocator
must necessarily return different kinds of pointers?

Alignment requirements can generally be satisfied easily, at the cost of some
wasted space, by ensuring that the allocator always returns a pointer that meets
all alignment restrictions. The alloc of Chapter 5 does not guarantee any par-
ticular alignment, so we will use the standard library function malloc, which
does. In Chapter 8 we will show one way to implement malloc.

The question of the type declaration for a function like malloc is a vexing
one for any language that takes its type-checking seriously. In C, the proper
method is to declare that malloc returns a pointer to void, then explicitly co-
erce the pointer into the desired type with a cast. malloc and related routines
are declared in the standard header <stdlib.h>. Thus talloc can be written
as

#include <stdlib.h>

/* talloc: make a tnode */
struct tnode *talloc(void)

{
}

return (struct tnode *) malloc(sizeof(struct tnode));

strdup merely copies the string given by its argument into a safe place,
obtained by a call on malloc:
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char *strdup(char *s) /* make a duplicate of s */

{

char *p;

p = (char *) malloc(strlen(s)+1); /* +1 for '\0' */
if (p != NULL)

strcepy(p, s);
return p;

}

malloc returns NULL if no space is available; strdup passes that value on, leav-
ing error-handling to its caller.

Storage obtained by calling malloc may be freed for re-use by calling free;
see Chapters 7 and 8.

Exercise 6-2. Write a program that reads a C program and prints in alpha-
betical order each group of variable names that are identical in the first 6
characters, but different somewhere thereafter. Don’t count words within
strings and comments. Make 6 a parameter that can be set from the command
line. (J

Exercise 6-3. Write a cross-referencer that prints a list of all words in a
document, and, for each word, a list of the line numbers on which it occurs.
Remove noise words like “the,” “and,” and so on. []

Exercise 6-4. Write a program that prints the distinct words in its input sorted
into decreasing order of frequency of occurrence. Precede each word by its
count. [J

6.6 Table Lookup

In this section we will write the innards of a table-lookup package, to illus-
trate more aspects of structures. This code is typical of what might be found
in the symbol table management routines of a macro processor or a compiler.
For example, consider the #define statement. When a line like

#define IN 1

is encountered, the name 1N and the replacement text 1 are stored in a table.
Later, when the name IN appears in a statement like

state = IN;

it must be replaced by 1.

There are two routines that manipulate the names and replacement texts.
install(s,t) records the name s and the replacement text t in a table; s and
t are just character strings. lookup(s) searches for s in the table, and returns
a pointer to the place where it was found, or NULL if it wasn’t there.
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The algorithm is a hash search—the incoming name is converted into a
small non-negative integer, which is then used to index into an array of pointers.
An array element points to the beginning of a linked list of blocks describing
names that have that hash value. It is NULL if no names have hashed to that
value.

0
name
o —— —1—defn
0
0
—1 —-name
o “—t+—defn

A block in the list is a structure containing pointers to the name, the re-
placement text, and the next block in the list. A null next-pointer marks the
end of the list.

struct nlist { /* table entry: */
struct nlist *next; /* next entry in chain */
char *name; /* defined name */
char *defn; /* replacement text */

Y

The pointer array is just
#define HASHSIZE 101

static struct nlist *hashtab[HASHSIZE]; /* pointer table */

The hashing function, which is used by both lookup and install, adds
each character value in the string to a scrambled combination of the previous
ones and returns the remainder modulo the array size. This is not the best
possible hash function, but it is short and effective.

/* hash: form hash value for string s */
unsigned hash(char *s)

{
unsigned hashval;
for (hashval = 0; *s != "\0'; s++)
hashval = *s + 31 * hashval;
return hashval % HASHSIZE;
¥

Unsigned arithmetic ensures that the hash value is non-negative.

The hashing process produces a starting index in the array hashtab; if the
string is to be found anywhere, it will be in the list of blocks beginning there.
The search is performed by lookup. If lookup finds the entry already present,
it returns a pointer to it; if not, it returns NULL.
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/* lookup: look for s in hashtab */
struct nlist *lookup(char *s)

{
struct nlist *np;
for (np = hashtabl[hash(s)]; np != NULL; np = np->next)
if (strcmp(s, np->name) == 0)
return np; /* found */
return NULL; /* not found */
¥

The for loop in lookup is the standard idiom for walking along a linked list:

for (ptr = head; ptr != NULL; ptr = ptr->next)

install uses lookup to determine whether the name being installed is al-
ready present; if so, the new definition will supersede the old one. Otherwise,
a new entry is created. install returns NULL if for any reason there is no room
for a new entry.

struct nlist *lookup(char *);
char *strdup(char *);

/* install: put (name, defn) in hashtab */
struct nlist *install(char *name, char *defn)

{
struct nlist *np;
unsigned hashval;
if ((np = lookup(name)) == NULL) { /* not found */
np = (struct nlist *) malloc(sizeof(*np));
if (np == NULL || (np->name = strdup(name)) == NULL)
return NULL,
hashval = hash(name);
np->next = hashtab[hashval];
hashtab[hashval] = np;
} else /* already there */
free((void *) np->defn); /* free previous defn */
if ((np->defn = strdup(defn)) == NULL)
return NULL;
return np;
}

Exercise 6-5. Write a function undef that will remove a name and definition
from the table maintained by lookup and install. []

Exercise 6-6. Implement a simple version of the #define processor (i.e., no ar-
guments) suitable for use with C programs, based on the routines of this section.
You may also find getch and ungetch helpful. [
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6.7 Typedef

C provides a facility called typedef for creating new data type names. For
example, the declaration

typedef int Length;

makes the name Length a synonym for int. The type Length can be used in
declarations, casts, etc., in exactly the same ways that the type int can be:

Length len, maxlen;
Length *lengths[];

Similarly, the declaration
typedef char *String;

makes string a synonym for char * or character pointer, which may then be
used in declarations and casts:
String p, lineptr[MAXLINES], alloc(int);

int stremp(String, String);
p = (String) malloc(100);

Notice that the type being declared in a typedef appears in the position
of a variable name, not right after the word typedef. Syntactically, typedef is
like the storage classes extern, static, etc. We have used capitalized names
for typedefs, to make them stand out.

As amore complicated example, we could make typedefs for the tree nodes
shown earlier in this chapter:

typedef struct tnode *Treeptr;

typedef struct tnode { /* the tree node: */

char *word; /* points to the text */
int count; /* number of occurrences */
Treeptr left; /* left child */

Treeptr right; /* right child */

} Treenode;

This creates two new type keywords called Treenode (a structure) and Treeptr
(a pointer to the structure). Then the routine talloc could become

Treeptr talloc(void)
{

}

It must be emphasized that a typedef declaration does not create a new
type in any sense; it merely adds a new name for some existing type. Nor are
there any new semantics: variables declared this way have exactly the same
properties as variables whose declarations are spelled out explicitly. In effect,
typedef is like #define, except that since it is interpreted by the compiler, it

return (Treeptr) malloc(sizeof(Treenode));
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can cope with textual substitutions that are beyond the capabilities of the pre-
processor. For example,

typedef int (*PFI)(char *, char *);

creates the type PFI, for “pointer to function (of two char * arguments) return-
ing int,” which can be used in contexts like

PFI strcmp, numcmp;

in the sort program of Chapter 5.

Besides purely aesthetic issues, there are two main reasons for using
typedefs. The first is to parameterize a program against portability problems.
If typedefs are used for data types that may be machine-dependent, only the
typedefs need change when the program is moved. One common situation is
to use typedef names for various integer quantities, then make an appropriate
set of choices of short, int, and long for each host machine. Types like
size_t and ptrdiff_t from the standard library are examples.

The second purpose of typedefs is to provide better documentation for a
program—a type called Treeptr may be easier to understand than one declared
only as a pointer to a complicated structure.

6.8 Unions

A union 1s a variable that may hold (at different times) objects of different
types and sizes, with the compiler keeping track of size and alignment require-
ments. Unions provide a way to manipulate different kinds of data in a single
area of storage, without embedding any machine-dependent information in the
program. They are analogous to variant records in Pascal.

As an example such as might be found in a compiler symbol table manager,
suppose that a constant may be an int, a float, or a character pointer. The
value of a particular constant must be stored in a variable of the proper type,
yet it is most convenient for table management if the value occupies the same
amount of storage and is stored in the same place regardless of its type. This is
the purpose of a union—a single variable that can legitimately hold any one of
several types. The syntax is based on structures:

union u_tag {
int ival;
float fval;
char *sval;
}ou;

The variable u will be large enough to hold the largest of the three types;
the specific size is implementation-dependent. Any one of these types may be
assigned to u and then used in expressions, so long as the usage is consistent:
the type retrieved must be the type most recently stored. It is the programmer’s
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responsibility to keep track of which type is currently stored in a union; the
results are implementation-dependent if something is stored as one type and
extracted as another.

Syntactically, members of a union are accessed as

union-name . member
or
union-pointer->member

just as for structures. If the variable utype is used to keep track of the current
type stored in u, then one might see code such as

if (utype == INT)
printf("%d\n", u.ival);
else if (utype == FLOAT)
printf("%£f\n", u.fval);
else if (utype == STRING)
printf("%s\n", u.sval);
else

printf("bad type %d in utype\n", utype);

Unions may occur within structures and arrays, and vice versa. The nota-
tion for accessing a member of a union in a structure (or vice versa) is identical
to that for nested structures. For example, in the structure array defined by

struct {
char *name;
int flags;
int utype;
union {
int ival;
float fval;
char *sval;
}ou;
} symtab[NSYM];
the member ival is referred to as
symtab[i].u.ival
and the first character of the string sval by either of

*symtab[i].u.sval
symtab[i].u.sval[0]

In effect, a union is a structure in which all members have offset zero from
the base, the structure is big enough to hold the “widest” member, and the
alignment is appropriate for all of the types in the union. The same operations
are permitted on unions as on structures: assignment to or copying as a unit,
taking the address, and accessing a member.

A union may only be initialized with a value of the type of its first member;
thus the union u described above can only be initialized with an integer value.
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The storage allocator in Chapter 8§ shows how a union can be used to force
a variable to be aligned on a particular kind of storage boundary.

6.9 Bit-fields

When storage space is at a premium, it may be necessary to pack several
objects into a single machine word; one common use is a set of single-bit flags
in applications like compiler symbol tables. Externally-imposed data formats,
such as interfaces to hardware devices, also often require the ability to get at
pieces of a word.

Imagine a fragment of a compiler that manipulates a symbol table. Each
identifier in a program has certain information associated with it, for example,
whether or not it is a keyword, whether or not it is external and/or static, and
so on. The most compact way to encode such information is a set of one-bit
flags in a single char or int.

The usual way this is done is to define a set of “masks” corresponding to
the relevant bit positions, as in

#define KEYWORD 01
#define EXTERNAL 02
#define STATIC 04

or

enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };

The numbers must be powers of two. Then accessing the bits becomes a matter
of “bit-fiddling” with the shifting, masking, and complementing operators that
were described in Chapter 2.

Certain idioms appear frequently:

flags |= EXTERNAL | STATIC;

turns on the EXTERNAL and STATIC bits in £1lags, while

flags &= ~(EXTERNAL | STATIC);

turns them off, and

if ((flags &(EXTERNAL | STATIC)) == 0) ...

is true if both bits are off.

Although these idioms are readily mastered, as an alternative C offers the
capability of defining and accessing fields within a word directly rather than by
bitwise logical operators. A bit-field, or field for short, is a set of adjacent bits
within a single implementation-defined storage unit that we will call a “word.”
The syntax of field definition and access is based on structures. For example,
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the symbol table #defines above could be replaced by the definition of three
fields:

struct {
unsigned int is_keyword : 1;
unsigned int is_extern : 1;
unsigned int is_static : 1;
} flags;

This defines a variable called f1ags that contains three 1-bit fields. The number
following the colon represents the field width in bits. The fields are declared
unsigned int to ensure that they are unsigned quantities.

Individual fields are referenced in the same way as other structure members:
flags.is_keyword, flags.is_extern, etc. Fields behave like small integers,
and may participate in arithmetic expressions just like other integers. Thus the
previous examples may be written more naturally as

flags.is_extern = flags.is_static = 1;
to turn the bits on;

flags.is_extern = flags.is_static = 0;
to turn them off; and

if (flags.is_extern == 0 && flags.is_static == 0)

to test them.

Almost everything about fields is implementation-dependent. Whether a
field may overlap a word boundary is implementation-defined. Fields need not
be named; unnamed fields (a colon and width only) are used for padding. The
special width 0 may be used to force alignment at the next word boundary.

Fields are assigned left to right on some machines and right to left on others.
This means that although fields are useful for maintaining internally-defined
data structures, the question of which end comes first has to be carefully con-
sidered when picking apart externally-defined data; programs that depend on
such things are not portable. Fields may be declared only as ints; for porta-
bility, specify signed or unsigned explicitly. They are not arrays, and they do
not have addresses, so the & operator cannot be applied to them.
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Input and output facilities are not part of the C language itself, so we have
not emphasized them in our presentation thus far. Nonetheless, programs in-
teract with their environment in much more complicated ways than those we
have shown before. In this chapter we will describe the standard library, a set
of functions that provide input and output, string handling, storage manage-
ment, mathematical routines, and a variety of other services for C programs.
We will concentrate on input and output.

The ANSI standard defines these library functions precisely, so that they
can exist in compatible form on any system where C exists. Programs that con-
fine their system interactions to facilities provided by the standard library can
be moved from one system to another without change.

The properties of library functions are specified in more than a dozen head-
ers; we have already seen several of these, including <stdio.h>, <string.h>,
and <ctype.h>. We will not present the entire library here, since we are more
interested in writing C programs that use it. The library is described in detail
in Appendix B.

7.1 Standard Input and Output

As we said in Chapter 1, the library implements a simple model of text input
and output. A text stream consists of a sequence of lines; each line ends with
a newline character. If the system doesn’t operate that way, the library does
whatever 1s necessary to make it appear as if it does. For instance, the library
might convert carriage return and linefeed to newline on input and back again
on output.

The simplest input mechanism is to read one character at a time from the
standard input, normally the keyboard, with getchar:

int getchar(void)
getchar returns the next input character each time it is called, or EoF when
it encounters end of file. The symbolic constant EoF is defined in <stdio.h>.

151
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The value is typically -1, but tests should be written in terms of EOF so as to be
independent of the specific value.

In many environments, a file may be substituted for the keyboard by using
the < convention for input redirection: if a program prog uses getchar, then
the command line

prog <infile

causes prog to read characters from infile instead. The switching of the input
1s done in such a way that prog itself is oblivious to the change; in particular,
the string "<infile" is not included in the command-line arguments in argv.
Input switching is also invisible if the input comes from another program via a
pipe mechanism: on some systems, the command line

otherprog | prog

runs the two programs otherprog and prog, and pipes the standard output of
otherprog into the standard input for prog.
The function

int putchar(int)

is used for output: putchar(c) puts the character ¢ on the standard output,
which is by default the screen. putchar returns the character written, or EOF if
an error occurs. Again, output can usually be directed to a file with >filename:
if prog uses putchar,

prog >outfile

will write the standard output to outfile instead. If pipes are supported,

prog | anotherprog

puts the standard output of prog into the standard input of anotherprog.
Output produced by printf also finds its way to the standard output. Calls
to putchar and printf may be interleaved—output appears in the order in
which the calls were made.
Each source file that refers to an input/output library function must contain
the line

#include <stdio.h>

before the first reference. When the name is bracketed by < and > a search is
made for the header in a standard set of places (for example, on UNIX systems,
typically in the directory /usr/include).

Many programs read only one input stream and write only one output
stream; for such programs, input and output with getchar, putchar, and
printf may be entirely adequate, and is certainly enough to get started. This
1s particularly true if redirection is used to connect the output of one program
to the input of the next. For example, consider the program lower, which
converts its input to lower case:
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#include <stdio.h>
#include <ctype.h>

main() /* lower: convert input to lower case */

{
int c;
while ((c¢ = getchar()) != EOF)
putchar(tolower(c));
return O;
¥

The function tolower is defined in <ctype.h>; it converts an upper case
letter to lower case, and returns other characters untouched. As we mentioned
earlier, “functions” like getchar and putchar in <stdio.h> and tolower In
<ctype.h> are often macros, thus avoiding the overhead of a function call per
character. We will show how this is done in Section 8.5. Regardless of how the
<ctype.h> functions are implemented on a given machine, programs that use
them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case
to upper, depending on the name it is invoked with, as found in argv[o]. [J

7.2 Formatted Output—Printf

The output function printf translates internal values to characters. We
have used printf informally in previous chapters. The description here covers
most typical uses but is not complete; for the full story, see Appendix B.

int printf(char *format, arg;, arg, ...)

printf converts, formats, and prints its arguments on the standard output un-
der control of the format. It returns the number of characters printed.

The format string contains two types of objects: ordinary characters,
which are copied to the output stream, and conversion specifications, each
of which causes conversion and printing of the next successive argument
to printf. Each conversion specification begins with a % and ends with a
conversion character. Between the % and the conversion character there may
be, in order:

* A minus sign, which specifies left adjustment of the converted argument.

* A number that specifies the minimum field width. The converted argu-
ment will be printed in a field at least this wide. If necessary it will be
padded on the left (or right, if left adjustment is called for) to make up
the field width.

* A period, which separates the field width from the precision.

* A number, the precision, that specifies the maximum number of charac-
ters to be printed from a string, or the number of digits after the decimal
point of a floating-point value, or the minimum number of digits for an
integer.
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* An hif the integer is to be printed as a short, or 1 (letter ell) if as a 1long.

Conversion characters are shown in Table 7-1. If the character after the % is
not a conversion specification, the behavior is undefined.

TABLE 7-1. BAsic PRINTF CONVERSIONS

CHARACTER INPUT DATA; ARGUMENT TYPE
d,i int; decimal number.
o int; unsigned octal number (without a leading zero).
x,X int; unsigned hexadecimal number (without a leading ox or
0X), using abcdef or ABCDEF for 10, ..., 15.
u int; unsigned decimal number.

int; single character

char *; print characters from the string until a '\o' or the
number of characters given by the precision

£ double; [-]m.dddddd, where the number of d’s is given by the
precision (default 6).

e, E double; [-|m.dddddde+xx or [-|m.dddddde+xx, where the
number of d’s is given by the precision (default 6).

g, G double; use %e or %E if the exponent is less than -4 or greater
than or equal to the precision; otherwise use %£. Trailing zeros
and a trailing decimal point are not printed.

void *; pointer (implementation-dependent representation).
no argument is converted; print a %.

o]

®

A width or precision may be specified as ., in which case the value is com-
puted by converting the next argument (which must be an int). For example,
to print at most max characters from a string s,

printf("%.*s", max, s);

Most of the format conversions have been illustrated in earlier chapters.
One exception is precision as it relates to strings. The following table shows the
effect of a variety of specifications in printing “hello, world” (12 characters).
We have put colons around each field so you can see its extent.

1 %S thello, world:
:%10s: thello, world:
:1%.10s thello, wor:
:%—-10s :hello, world:
:1%.15s thello, world:
:%-15s thello, world
%

15.10s: : hello, wor:
-15.10s: thello, wor

o
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A warning: printf uses its first argument to decide how many arguments
follow and what their types are. It will get confused, and you will get wrong
answers, if there are not enough arguments or if they are the wrong type. You
should also be aware of the difference between these two calls:

printf(s); /* FAILS if s contains % */
printf("%s", s); /* SAFE */

The function sprint £ does the same conversions as print £ does, but stores
the output in a string:

int sprintf(char *string, char *format, arg;, arg,, ...)

sprintf formats the arguments in arg;, arg,, etc., according to format as
before, but places the result in string instead of on the standard output;
string must be big enough to receive the result.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way.
As a minimum, it should print non-graphic characters in octal or hexadecimal
according to local custom, and break long text lines. [J

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of printf,
to show how to write a function that processes a variable-length argument list
in a portable way. Since we are mainly interested in the argument processing,
minprintf will process the format string and arguments but will call the real
printf to do the format conversions.

The proper declaration for printf is

int printf(char *fmt, ...)

where the declaration . .. means that the number and types of these arguments
may vary. The declaration ... can only appear at the end of an argument list.
Our minprintf is declared as

void minprintf(char *fmt, ...)

since we will not return the character count that printf does.

The tricky bit is how minprintf walks along the argument list when the list
doesn’t even have a name. The standard header <stdarg.h> contains a set of
macro definitions that define how to step through an argument list. The imple-
mentation of this header will vary from machine to machine, but the interface
it presents is uniform.

The type va_1list is used to declare a variable that will refer to each argu-
ment in turn; in minprint#£, this variable is called ap, for “argument pointer.”
The macro va_start initializes ap to point to the first unnamed argument. It
must be called once before ap is used. There must be at least one named argu-
ment; the final named argument is used by va_start to get started.
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Each call of va_arg returns one argument and steps ap to the next; va_arg
uses a type name to determine what type to return and how big a step to take.

Finally, va_end does whatever cleanup is necessary. It must be called before the
function returns.

These properties form the basis of our simplified printf:

#include <stdarg.h>

/* minprintf: minimal printf with variable argument list */

void minprintf(char *fmt, ...)

{
va_list ap; /* points to each unnamed arg in turn */
char *p, *sval;
int ival;

double dval;

va_start(ap, fmt); /* make ap point to 1st unnamed arg */
for (p = fmt; *p; p++) {
if (*p != '%') {
putchar(*p);
continue;
}
switch (*++p) {
case 'd':
ival = va_arg(ap, int);
printf("%d", ival);
break;
case 'f':
dval = va_arg(ap, double);
printf("%f", dval);
break;
case 's':
for (sval = va_arg(ap, char *); *sval; sval++)
putchar(*sval);

break;
default:
putchar(*p);
break;
}
¥
va_end(ap); /* clean up when done */

Exercise 7-3. Revise minprintf to handle more of the other facilities of printf.
O
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7.4 Formatted Input—Scanf

The function scanf is the input analog of printf, providing many of the
same conversion facilities in the opposite direction.

int scanf(char *format, ...)

scanf reads characters from the standard input, interprets them according to
the specification in format, and stores the results through the remaining argu-
ments. The format argument is described below; the other arguments, each
of which must be a pointer, indicate where the corresponding converted input
should be stored. As with printf£, this section is a summary of the most useful
features, not an exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to
match the control specification. It returns as its value the number of success-
fully matched and assigned input items. This can be used to decide how many
items were found. On end of file, EOF is returned; note that this is different from
0, which means that the next input character does not match the first specifica-
tion in the format string. The next call to scanf resumes searching immediately
after the last character already converted.

There is also a function sscanf that reads from a string instead of the stan-
dard input:

int sscanf(char *string, char *format, arg,, arg,, ...)

It scans the string according to the format in format, and stores the resulting
values through arg;, arg,, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are
used to control conversion of input. The format string may contain:

* Blanks or tabs, which are ignored.

* Ordinary characters (not %), which are expected to match the next non-
white space character of the input stream.

» Conversion specifications, consisting of the character %, an optional as-
signment suppression character *, an optional number specifying a max-
imum field width, an optional h, 1, or L indicating the width of the target,
and a conversion character.

A conversion specification directs the conversion of the next input field. Nor-
mally the result is placed in the variable pointed to by the corresponding argu-
ment. If assignment suppression is indicated by the . character, however, the
input field is skipped; no assignment is made. An input field is defined as a
string of non-white space characters; it extends either to the next white space
character or until the field width, if specified, is exhausted. This implies that
scanf will read across line boundaries to find its input, since newlines are white
space. (White space characters are blank, tab, newline, carriage return, vertical
tab, and formfeed.)
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The conversion character indicates the interpretation of the input field. The
corresponding argument must be a pointer, as required by the call-by-value
semantics of C. Conversion characters are shown in Table 7-2.

TABLE 7-2. BASIC SCANF CONVERSIONS

CHARACTER INPUT DATA; ARGUMENT TYPE
d decimal integer; int *.
i integer; int *. The integer may be in octal (leading 0) or hex-

adecimal (leading ox or 0x).

octal integer (with or without leading zero); int *.

unsigned decimal integer; unsigned int *.

hexadecimal integer (with or without leading 0x or 0X); int *.
characters; char s. The next input characters (default 1) are
placed at the indicated spot. The normal skip over white space
is suppressed; to read the next non-white space character, use
%1s

s character string (not quoted); char s, pointing to an array of
characters large enough for the string and a terminating '\o"
that will be added.

e, f,g floating-point number with optional sign, optional decimal
point and optional exponent; float *.

literal %; no assignment is made.

Q X < O

o

The conversion characters d, i, o, u, and x may be preceded by h to indicate
that a pointer to short rather than int appears in the argument list, or by
1 (letter ell) to indicate that a pointer to long appears in the argument list.
Similarly, the conversion characters e, £, and g may be preceded by 1 to indicate
that a pointer to double rather than float is in the argument list.

As a first example, the rudimentary calculator of Chapter 4 can be written
with scanf to do the input conversion:

#include <stdio.h>

main() /* rudimentary calculator */

{
double sum, v;
sum = 0;
while (scanf("%1lf", &v) == 1)
printf("\t%.2f\n", sum += v);
return O;
}

Suppose we want to read input lines that contain dates of the form
25 Dec 1988
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The scanf statement is

int day, year;
char monthname[20];

scanf("%d %s %d", &day, monthname, &year);

No & is used with monthname, since an array name is a pointer.

Literal characters can appear in the scanf format string; they must match
the same characters in the input. So we could read dates of the form mm/dd/yy
with this scanf statement:

int day, year;
char monthname[20];

scanf("%d %s %d", &day, monthname, &year);

scanf ignores blanks and tabs in its format string. Furthermore, it skips
over white space (blanks, tabs, newlines, etc.) as it looks for input values. To
read input whose format is not fixed, it is often best to read a line at a time,
then pick it apart with sscanf. For example, suppose we want to read lines
that might contain a date in either of the forms above. Then we could write

while (getline(line, sizeof(line)) > 0) {

if (sscanf(line, "%d %s %d", &day, monthname, &year) == 3)
printf("valid: %s\n", line); /* 25 Dec 1988 form */

else if (sscanf(line, "%d/%d/%d", &month, &day, &year) == 3)
printf("valid: %s\n", line); /* mm/dd/yy form */

else
printf("invalid: %s\n", line); /* invalid form */

Calls to scanf can be mixed with calls to other input functions. The next
call to any input function will begin by reading the first character not read by
scanf.

A final warning: the arguments to scanf and sscanf must be pointers. By
far the most common error is writing

scanf("%d", n);

instead of

scanf("%d", &n);

This error is not generally detected at compile time.

Exercise 7-4. Write a private version of scanf analogous to minprintf from
the previous section. []

Exercise 7-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or
sscanf to do the input and number conversion. []
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7.5 File Access

The examples so far have all read the standard input and written the stan-
dard output, which are automatically defined for a program by the local oper-
ating system.

The next step is to write a program that accesses a file that is not already
connected to the program. One program that illustrates the need for such oper-
ations is cat, which concatenates a set of named files onto the standard output.
cat 1s used for printing files on the screen, and as a general-purpose input col-
lector for programs that do not have the capability of accessing files by name.
For example, the command

cat x.c y.c

prints the contents of the files x.c and y.c (and nothing else) on the standard
output.

The question is how to arrange for the named files to be read—that is, how
to connect the external names that a user thinks of to the statements that read
the data.

The rules are simple. Before it can be read or written, a file has to be opened
by the library function fopen. fopen takes an external name like x.c or y.c,
does some housekeeping and negotiation with the operating system (details of
which needn’t concern us), and returns a pointer to be used in subsequent reads
or writes of the file.

This pointer, called the file pointer, points to a structure that contains in-
formation about the file, such as the location of a buffer, the current character
position in the buffer, whether the file is being read or written, and whether er-
rors or end of file have occurred. Users don’t need to know the details, because
the definitions obtained from <stdio.h> include a structure declaration called
FILE. The only declaration needed for a file pointer is exemplified by

FILE *fp;
FILE *fopen(char *name, char *mode);

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE.
Notice that FILE is a type name, like int, not a structure tag; it is defined with
a typedef. (Details of how fopen can be implemented on the UNIX system
are given in Section 8.5.)

The call to fopen in a program is

fp = fopen(name, mode);

The first argument of fopen is a character string containing the name of the file.
The second argument is the mode, also a character string, which indicates how
one intends to use the file. Allowable modes include read ("r"), write ("w"),
and append ("a"). Some systems distinguish between text and binary files; for
the latter, a "b" must be appended to the mode string.

If a file that does not exist is opened for writing or appending, it is created
if possible. Opening an existing file for writing causes the old contents to be
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discarded, while opening for appending preserves them. Trying to read a file
that does not exist is an error, and there may be other causes of error as well, like
trying to read a file when you don’t have permission. If there is any error, fopen
will return NuLL. (The error can be identified more precisely; see the discussion
of error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is a way to read or write the file once it is open. There
are several possibilities, of which getc and putc are the simplest. getc returns
the next character from a file; it needs the file pointer to tell it which file.

int getc(FILE *fp)

getc returns the next character from the stream referred to by fp; it returns
EOF for end of file or error.
putc is an output function:

int putc(int ¢, FILE *fp)

putc writes the character c to the file £p and returns the character written, or
EOF if an error occurs. Like getchar and putchar, getc and putc may be
macros instead of functions.

When a C program is started, the operating system environment is respon-
sible for opening three files and providing file pointers for them. These files
are the standard input, the standard output, and the standard error; the corre-
sponding file pointers are called stdin, stdout, and stderr, and are declared
in <stdio.h>. Normally stdin is connected to the keyboard and stdout and
stderr are connected to the screen, but stdin and stdout may be redirected
to files or pipes as described in Section 7.1.

getchar and putchar can be defined in terms of getc, putc, stdin, and
stdout as follows:

#define getchar() getc(stdin)
#define putchar(c) putc((c), stdout)

For formatted input or output of files, the functions fscanf and fprintf
may be used. These are identical to scanf and printf, except that the first
argument is a file pointer that specifies the file to be read or written; the format
string is the second argument.

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

With these preliminaries out of the way, we are now in a position to write
the program cat to concatenate files. The design is one that has been found
convenient for many programs. If there are command-line arguments, they are
interpreted as filenames, and processed in order. If there are no arguments, the
standard input is processed.
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#include <stdio.h>

/* cat: concatenate files, version 1 */
main(int argc, char *argv[])

{
FILE *fp;
void filecopy(FILE *, FILE *);
if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
else
while (--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
printf("cat: can't open %s\n", *argv);
return 1;
} else {
filecopy(fp, stdout);
fclose(fp);
}
return 0;
}

/* filecopy: copy file ifp to file ofp */
void filecopy(FILE *ifp, FILE *ofp)

{
int c;
while ((c = getc(ifp)) != EOF)
putc(c, ofp);
}

The file pointers stdin and stdout are objects of type FILE *. They are con-
stants, however, not variables, so it is not possible to assign to them.

The function

int fclose(FILE *fp)

is the inverse of fopen; it breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for
another file. Since most operating systems have some limit on the number of
files that a program may have open simultaneously, it’s a good idea to free file
pointers when they are no longer needed, as we did in cat. There is also an-
other reason for fclose on an output file—it flushes the buffer in which putc
is collecting output. fclose is called automatically for each open file when a
program terminates normally. (You can close stdin and stdout if they are not
needed. They can also be reassigned by the library function freopen.)
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7.6 Error Handling—Stderr and Exit

The treatment of errors in cat is not ideal. The trouble is that if one of the
files can’t be accessed for some reason, the diagnostic is printed at the end of
the concatenated output. That might be acceptable if the output is going to a
screen, but not if it’s going into a file or into another program via a pipeline.

To handle this situation better, a second output stream, called stderr, is
assigned to a program in the same way that stdin and stdout are. Output
written on stderr normally appears on the screen even if the standard output
1s redirected.

Let us revise cat to write its error messages on the standard error.

#include <stdio.h>

/* cat: concatenate files, version 2 */
main(int argc, char *argv[])
{
FILE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[0]; /* program name for errors */

if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
else
while (--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
fprintf(stderr, "%s: can't open %s\n",
prog, *argv);
exit(1l);
} else {
filecopy(£fp, stdout);
fclose(fp);

X
if (ferror(stdout)) {

fprintf(stderr, "%s: error writing stdout\n", prog);
exit(2);
}
exit(0);
¥

The program signals errors two ways. First, the diagnostic output pro-
duced by fprintf goes onto stderr, so it finds its way to the screen instead of
disappearing down a pipeline or into an output file. We included the program
name, from argv[ 0], in the message, so if this program is used with others, the
source of an error is identified.

Second, the program uses the standard library function exit, which termi-
nates program execution when it is called. The argument of exit is available
to whatever process called this one, so the success or failure of the program can
be tested by another program that uses this one as a sub-process. Convention-
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ally, a return value of 0 signals that all is well; non-zero values usually signal
abnormal situations. exit calls fclose for each open output file, to flush out
any buffered output.

Within main, return expr is equivalent to exit(expr). exit has the advan-
tage that it can be called from other functions, and that calls to it can be found
with a pattern-searching program like those in Chapter 5.

The function ferror returns non-zero if an error occurred on the stream

fp.

int ferror(FILE *fp)

Although output errors are rare, they do occur (for example, if a disk fills up),
so a production program should check this as well.

The function feof(FILE *) is analogous to ferror; it returns non-zero if
end of file has occurred on the specified file.

int feof(FILE *fp)

We have generally not worried about exit status in our small illustrative
programs, but any serious program should take care to return sensible, useful
status values.

7.7 Line Input and Output

The standard library provides an input routine fgets that is similar to the
getline function that we have used in earlier chapters:

char *fgets(char *line, int maxline, FILE *fp)

fgets reads the next input line (including the newline) from file fp into the
character array 1ine; at most maxline-1 characters will be read. The resulting
line is terminated with \o . Normally fgets returns line; on end of file or
error it returns NULL. (Our getline returns the line length, which is a more
useful value; zero means end of file.)

For output, the function fputs writes a string (which need not contain a
newline) to a file:

int fputs(char *line, FILE *fp)

It returns eor if an error occurs, and zero otherwise.

The library functions gets and puts are similar to fgets and fputs, but
operate on stdin and stdout. Confusingly, gets deletes the terminal \n ,
and puts adds it.

To show that there is nothing special about functions like fgets and fputs,
here they are, copied from the standard library on our system:



7.7. LINE INPUT AND OUTPUT 165

/* fgets: get at most n chars from iop */
char *fgets(char *s, int n, FILE *iop)

{

register int c;

register char *cs;

cs = s;

while (--n > 0 && (c = getc(iop)) != EOF)

if ((*cs++ = c¢) == '\n')
break;

*cs = '\0';

return (c == EOF && cs == s) ? NULL : s;
}

/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)

{
int c;
while (c = *s++)
putc(c, iop);
return ferror(iop) ? EOF : O;
}

The standard specifies that ferror returns non-zero for error; fputs returns
EOF for error and a non-negative value otherwise.

It is easy to implement our getline from fgets:

/* getline: read a line, return length */
int getline(char *1line, int max)

{
if (fgets(line, max, stdin) == NULL)
return 0;
else
return strlen(line);
}

Exercise 7-6. Write a program to compare two files, printing the first line
where they differ. O

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its
input from a set of named files or, if no files are named as arguments, from
the standard input. Should the file name be printed when a matching line is
found? OJ

Exercise 7-8. Write a program to print a set of files, starting each new one on a
new page, with a title and a running page count for each file. [J
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7.8 Miscellaneous Functions

The standard library provides a wide variety of functions. This section is a
brief synopsis of the most useful. More details and many other functions can
be found in Appendix B.

7.8.1 String Operations

We have already mentioned the string functions strlen, strcpy, strcat, and
stremp, found in <string.h>. In the following, s and t are char *’s, and c
and n are ints.

strcat(s,t) concatenate t to end of s
strncat(s,t,n) concatenate n characters of t to end of s
stremp(s,t) return negative, zero, or positive for

s < t,s == t£,0Ir's > t

strnemp(s,t,n) same as stremp but only in first n characters

strcpy(s,t) copy ttos

strnepy(s,t,n) copy at mostncharactersof ttos

strlen(s) return length of s

strchr(s,c) return pointer to first ¢ in s, or NULL if not present
strrchr(s,c) return pointer to last ¢ in s, or NULL if not present

7.8.2 Character Class Testing and Conversion

Several functions from <ctype . h> perform character tests and conversions.
In the following, c is an int that can be represented as an unsigned char, or
EOF. The functions return int.

isalpha(c) non-zero if c is alphabetic, 0 if not

isupper(c) non-zero if cis upper case, 0 if not

islower(c) non-zero if cis lower case, 0 if not

isdigit(c) non-zero if cis digit, 0 if not

isalnum(c) non-zero if isalpha(c) or isdigit(c), 0if not

isspace(c) non-zero if c is blank, tab, newline, return, formfeed, vertical tab
toupper(c) return c converted to upper case

tolower(c) return c converted to lower case

7.8.3 Ungetc

The standard library provides a rather restricted version of the function
ungetch that we wrote in Chapter 4; it is called ungetc.

int ungetc(int ¢, FILE *fp)
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pushes the character ¢ back onto file £p, and returns either ¢, or EoF for an
error. Only one character of pushback is guaranteed per file. ungetc may be
used with any of the input functions like scanf, getc, or getchar.

7.8.4 Command Execution

The function system(char *s) executes the command contained in the
character string s, then resumes execution of the current program. The con-
tents of s depend strongly on the local operating system. As a trivial example,
on UNIX systems, the statement

system("date");
causes the program date to be run; it prints the date and time of day on the
standard output. system returns a system-dependent integer status from the

command executed. In the UNIX system, the status return is the value returned
by exit.

7.8.5 Storage Management

The functions malloc and calloc obtain blocks of memory dynamically.
void *malloc(size_t n)

returns a pointer to n bytes of uninitialized storage, or NULL if the request can-
not be satisfied.

void *calloc(size_t n, size_t size)

returns a pointer to enough space for an array of n objects of the specified size,
or NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer returned by malloc or calloc has the proper alignment for
the object in question, but it must be cast into the appropriate type, as in

int *ip;
ip = (int *) calloc(n, sizeof(int));

free(p) frees the space pointed to by p, where p was originally obtained
by a call to malloc or calloc. There are no restrictions on the order in which
space is freed, but it is a ghastly error to free something not obtained by calling
calloc Ormalloc.

It is also an error to use something after it has been freed. A typical but
incorrect piece of code is this loop that frees items from a list:

for (p = head; p != NULL; p = p->next) /* WRONG */
free(p);

The right way is to save whatever is needed before freeing:
for (p = head; p != NULL; p = q) {
q = p->next;
free(p);
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Section 8.7 shows the implementation of a storage allocator like malloc, in
which allocated blocks may be freed in any order.

7.8.6 Mathematical Functions

There are more than twenty mathematical functions declared in <math.h>;
here are some of the more frequently used. Each takes one or two double
arguments and returns a double.

sin(x) sine of x, x in radians

cos(x) cosine of x, x in radians

atan2(y,x) arctangent of y/x, in radians

exp(x) exponential function ¢*

log(x) natural (base ¢) logarithm of x (x > 0)

logl0(x) log1o(x) common (base 10) logarithm of x (x > 0)
pow(X,y) x”

sqrt(x) sqrt(x) square root of x (x > 0)

fabs(x) fabs (x) absolute value of x

7.8.7 Random Number Generation

The function rand() computes a sequence of pseudo-random integers in
the range zero to RAND_MAX, which is defined in <stdlib.h>. One way to pro-
duce random floating-point numbers greater than or equal to zero but less than
one is

#define frand() ((double) rand() / (RAND_MAX+1.0))

(If your library already provides a function for floating-point random numbers,
it is likely to have better statistical properties than this one.)

The function srand(unsigned) sets the seed for rand. The portable imple-
mentation of rand and srand suggested by the standard appears in Section 2.7.

Exercise 7-9. Functions like isupper can be implemented to save space or to
save time. Explore both possibilities. [
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The UNIX operating system provides its services through a set of system
calls, which are in effect functions within the operating system that may be
called by user programs. This chapter describes how to use some of the most
important system calls from C programs. If you use UNIX, this should be
directly helpful, for it is sometimes necessary to employ system calls for maxi-
mum efficiency, or to access some facility that is not in the library. Even if you
use C on a different operating system, however, you should be able to glean in-
sight into C programming from studying these examples; although details vary,
similar code will be found on any system. Since the ANSI C library is in many
cases modeled on UNIX facilities, this code may help your understanding of
the library as well.

The chapter is divided into three major parts: input/output, file system,
and storage allocation. The first two parts assume a modest familiarity with
the external characteristics of UNIX systems.

Chapter 7 was concerned with an input/output interface that is uniform
across operating systems. On any particular system the routines of the standard
library have to be written in terms of the facilities provided by the host system.
In the next few sections we will describe the UNIX system calls for input and
output, and show how parts of the standard library can be implemented with
them.

8.1 File Descriptors

In the UNIX operating system, all input and output is done by reading or
writing files, because all peripheral devices, even keyboard and screen, are files
in the file system. This means that a single homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before you read or write a file, you must inform
the system of your intent to do so, a process called opening the file. If you are
going to write on a file it may also be necessary to create it or to discard its
previous contents. The system checks your right to do so (Does the file exist?

169
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Do you have permission to access it?), and if all is well, returns to the program a
small non-negative integer called a file descriptor. Whenever input or output is
to be done on the file, the file descriptor is used instead of the name to identify
the file. (A file descriptor is analogous to the file pointer used by the standard
library, or to the file handle of MS-DOS.) All information about an open file
1s maintained by the system; the user program refers to the file only by the file
descriptor.

Since input and output involving keyboard and screen is so common, spe-
cial arrangements exist to make this convenient. When the command inter-
preter (the “shell”) runs a program, three files are open, with file descriptors 0,
1, and 2, called the standard input, the standard output, and the standard error.
If a program reads 0 and writes 1 and 2, it can do input and output without
worrying about opening files.

The user of a program can redirect I/O to and from files with < and >:

prog <infile >outfile

In this case, the shell changes the default assignments for file descriptors 0 and
1 to the named files. Normally file descriptor 2 remains attached to the screen,
so error messages can go there. Similar observations hold for input or output
associated with a pipe. In all cases, the file assignments are changed by the
shell, not by the program. The program does not know where its input comes
from nor where its output goes, so long as it uses file 0 for input and 1 and 2
for output.

8.2 Low Level I/10—Read and Write

Input and output uses the read and write system calls, which are accessed
from C programs through two functions called read and write. For both, the
first argument is a file descriptor. The second argument is a character array in
your program where the data is to go to or come from. The third argument is
the number of bytes to be transferred.

int n_read = read(int fd, char *buf, int n);
int n_written = write(int £fd, char *buf, int n);

Each call returns a count of the number of bytes transferred. On reading, the
number of bytes returned may be less than the number requested. A return
value of zero bytes implies end of file, and -1 indicates an error of some sort.
For writing, the return value is the number of bytes written; an error has oc-
curred if this isn’t equal to the number requested.

Any number of bytes can be read or written in one call. The most common
values are 1, which means one character at a time (“unbuffered”), and a num-
ber like 1024 or 4096 that corresponds to a physical block size on a peripheral
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device. Larger sizes will be more efficient because fewer system calls will be
made.

Putting these facts together, we can write a simple program to copy its input
to its output, the equivalent of the file copying program written for Chapter 1.
This program will copy anything to anything, since the input and output can
be redirected to any file or device.

#include "syscalls.h"

main() /* copy input to output */

{
char buf[BUFSIZ];
int n;
while ((n = read(0, buf, BUFSIZ)) > 0)
write(l, buf, n);
return O;
¥

We have collected function prototypes for the system calls into a file called
syscalls.h so we can include it in the programs of this chapter. This name is
not standard, however.

The parameter BuFs1z is also defined in syscalls.h; its value is a good
size for the local system. If the file size is not a multiple of BUFs1z, some read
will return a smaller number of bytes to be written by write; the next call to
read after that will return zero.

It is instructive to see how read and write can be used to construct higher-
level routines like getchar, putchar, etc. For example, here is a version of
getchar that does unbuffered input, by reading the standard input one charac-
ter at a time.

#include "syscalls.h"

/* getchar: unbuffered single character input */
int getchar(void)
{

char c;

return (read(0, &c, 1) == 1) ? (unsigned char) c : EOF;
¥

c must be a char, because read needs a character pointer. Casting ¢ to
unsigned char in the return statement eliminates any problem of sign
extension.

The second version of getchar does input in big chunks, and hands out
the characters one at a time.
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#include "syscalls.h"

/* getchar: simple buffered version */
int getchar(void)

{
static char buf[BUFSIZ];
static char *bufp = buf;
static int n = 0;
if (n == 0) { /* buffer is empty */
n = read(0, buf, sizeof buf);
bufp = buf;
}
return (--n >= 0) ? (unsigned char) *bufp++ : EOF;
¥

If these versions of getchar were to be compiled with <stdio.h> included, it
would be necessary to #undef the name getchar in case it is implemented as a
macro.

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error, you must explicitly
open files in order to read or write them. There are two system calls for this,
open and creat [sic].

open is rather like the fopen discussed in Chapter 7, except that instead of
returning a file pointer, it returns a file descriptor, which is just an int. open
returns -1 if any error occurs.

#include <fcntl.h>

int £fd;
int open(char *name, int flags, int perms);

fd = open(name, flags, perms);

As with fopen, the name argument is a character string containing the filename.
The second argument, £1ags, is an int that specifies how the file is to be opened;
the main values are

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for both reading and writing

These constants are defined in <fentl.h> on System V UNIX systems, and in
<sys/file.h> on Berkeley (BSD) versions.
To open an existing file for reading,

fd = open(name, O_RDONLY, 0);
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The perms argument is always zero for the uses of open that we will discuss.

It is an error to try to open a file that does not exist. The system call creat
is provided to create new files, or to re-write old ones.

int creat(char *name, int perms);
fd = creat(name, perms);

returns a file descriptor if it was able to create the file, and -1 if not. If the
file already exists, creat will truncate it to zero length, thereby discarding its
previous contents; it is not an error to creat a file that already exists.

If the file does not already exist, creat creates it with the permissions spec-
ified by the perms argument. In the UNIX file system, there are nine bits of
permission information associated with a file that control read, write and exe-
cute access for the owner of the file, for the owner’s group, and for all others.
Thus a three-digit octal number is convenient for specifying the permissions.
For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX program cp, which
copies one file to another. Our version copies only one file, it does not permit
the second argument to be a directory, and it invents permissions instead of
copying them.

#include <stdio.h>

#include <fcntl.h>

#include "syscalls.h"

#define PERMS 0666 /* RW for owner, group, others */

void error(char *, ...);

/* cp: copy f1l to f2 */
main(int argc, char *argv[])
{

int f1, £2, n;

char buf[BUFSIZ];

if (argc != 3)
error("Usage: cp from to");

if ((f1 = open(argv[1l], O_RDONLY, 0)) == -1)
error("cp: can't open %s", argv[1l]);

if ((f2 = creat(argv[2], PERMS)) == -1)

error("cp: can't create %s, mode %030",
argv[2], PERMS);
while ((n = read(fl, buf, BUFSIZ)) > 0)
if (write(f2, buf, n) != n)
error("cp: write error on file %s", argv[2]);
return O;
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This program creates the output file with fixed permissions of oe66. With the
stat system call, described in Section 8.6, we can determine the mode of an
existing file and thus give the same mode to the copy.

Notice that the function error is called with variable argument lists much
like print£. The implementation of error illustrates how to use another mem-
ber of the printf family. The standard library function vprintf is like printf
except that the variable argument list is replaced by a single argument that
has been initialized by calling the va_start macro. Similarly, vfprintf and
vsprintf match fprintf and sprintf.

#include <stdio.h>
#include <stdarg.h>

/* error: print an error message and die */
void error(char *fmt, ...)

{

va_list args;

va_start(args, fmt);
fprintf(stderr, "error: ");
viprintf(stderr, fmt, args);
fprintf(stderr, "\n");
va_end(args);
exit(1l);

}

There is a limit (often about 20) on the number of files that a program may
have open simultaneously. Accordingly, any program that intends to process
many files must be prepared to re-use file descriptors. The function close(int
£d) breaks the connection between a file descriptor and an open file, and frees
the file descriptor for use with some other file; it corresponds to fclose in the
standard library except that there is no buffer to flush. Termination of a pro-
gram via exit or return from the main program closes all open files.

The function unlink(char *name) removes the file name from the file
system. It corresponds to the standard library function remove.

Exercise 8-1. Rewrite the program cat from Chapter 7 using read, write, open
and close instead of their standard library equivalents. Perform experiments
to determine the relative speeds of the two versions. [

8.4 Random Access—Lseek

Input and output are normally sequential: each read or write takes place
at a position in the file right after the previous one. When necessary, however, a
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file can be read or written in any arbitrary order. The system call 1seek provides
a way to move around in a file without reading or writing any data:

long lseek(int £fd, long offset, int origin);

sets the current position in the file whose descriptor is £d to offset, which is
taken relative to the location specified by origin. Subsequent reading or writ-
ing will begin at that position. origin can be 0, 1, or 2 to specify that offset
is to be measured from the beginning, from the current position, or from the
end of the file respectively. For example, to append to a file (the redirection >>
in the UNIX shell, or "a" for fopen), seek to the end before writing:

l1seek(£fd, OL, 2);
To get back to the beginning (“rewind”),
l1seek(£fd, OL, 0);

Notice the oL argument; it could also be written as (long) 0 or just as o if
1seek is properly declared.

With 1seek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following function reads any number
of bytes from any arbitrary place in a file. It returns the number read, or -1 on
error.

#include "syscalls.h"

/* get: read n bytes from position pos */
int get(int fd, long pos, char *buf, int n)

{
if (lseek(fd, pos, 0) >= 0) /* get to pos */
return read(fd, buf, n);
else
return -1;
¥

The return value from 1seek is a long that gives the new position in the file, or
-1 if an error occurs. The standard library function fseek is similar to 1seek
except that the first argument is a FILE * and the return is non-zero if an error
occurred.

8.5 Example—An Implementation of Fopen and Getc

Let us illustrate how some of these pieces fit together by showing an imple-
mentation of the standard library routines fopen and getc.

Recall that files in the standard library are described by file pointers rather
than file descriptors. A file pointer is a pointer to a structure that contains
several pieces of information about the file: a pointer to a buffer, so the file can
be read in large chunks; a count of the number of characters left in the buffer;
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a pointer to the next character position in the buffer; the file descriptor; and
flags describing read/write mode, error status, etc.

The data structure that describes a file is contained in <stdio.h>, which
must be included (by #include) in any source file that uses routines from the
standard input/output library. It is also included by functions in that library.
In the following excerpt from a typical <stdio.h>, names that are intended for
use only by functions of the library begin with an underscore so they are less
likely to collide with names in a user’s program. This convention is used by all
standard library routines.

#define NULL 0
#define EOF (-1)
#define BUFSIZ 1024

#define OPEN_MAX 20 /* max #files open at once */

typedef struct _iobuf {

int c¢nt; /* characters left */
char *ptr; /* next character position */
char *base; /* location of buffer */
int flag; /* mode of file access */
int £4d; /* file descriptor */
} FILE;

extern FILE _iob[OPEN_MAX];
#define stdin (&_iob[01])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

enum _flags {

_READ = 01, /* file open for reading */

_WRITE = 02, /* file open for writing */

_UNBUF = 04, /* file is unbuffered */

_EOF = 010, /* EOF has occurred on this file */
_ERR = 020 /* error occurred on this file */

}i

int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

#define feof(p) (((p)->flag & _EOF) != 0)
#define ferror(p) (((p)->flag & _ERR) != 0)
#define fileno(p) ((p)->£4d)

#define getc(p) (--(p)->cnt >= 0 \

? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (-——(p)->cnt >= 0 \
? *(p)->ptr++ = (x) : _flushbuf((x),p))

#define getchar() getc(stdin)
#define putchar(x) putc((x), stdout)
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The getc macro normally decrements the count, advances the pointer, and
returns the character. (Recall that a long #define is continued with a back-
slash.) If the count goes negative, however, getc calls the function _fillbuf
to replenish the buffer, re-initialize the structure contents, and return a char-
acter. The characters are returned unsigned, which ensures that all characters
will be positive.

Although we will not discuss any details, we have included the definition of
putc to show that it operates in much the same way as getc, calling a function
_flushbuf when its buffer is full. We have also included macros for accessing
the error and end-of-file status and the file descriptor.

The function fopen can now be written. Most of fopen is concerned with
getting the file opened and positioned at the right place, and setting the flag
bits to indicate the proper state. fopen does not allocate any buffer space; this
is done by _fillbuf when the file is first read.

#include <fcntl.h>
#include "syscalls.h"
#define PERMS 0666 /* RW for owner, group, others */

/* fopen: open file, return file ptr */
FILE *fopen(char *name, char *mode)

{

int £d;

FILE *fp;

if (*mode != 'r' && *mode != 'w' && *mode != 'a')
return NULL;

for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
if ((fp->flag & (_READ | _WRITE)) == 0)

break; /* found free slot */
if (fp >= _iob + OPEN_MAX) /* no free slots */

return NULL;

if (*mode == 'w')
fd = creat(name, PERMS);
else if (*mode == 'a') {
if ((f£d = open(name, O_WRONLY, 0)) == -1)
fd = creat(name, PERMS);
lseek(£fd, 0L, 2);

} else
fd = open(name, O_RDONLY, 0);

if (fd == -1) /* couldn't access name */
return NULL;

fp->fd = £fd;

fp->cnt = 0;

fp->base = NULL;

fp->flag = (*mode == 'r') ? _READ : _WRITE;

return f£fp;
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This version of fopen does not handle all of the access mode possibilities of the
standard, though adding them would not take much code. In particular, our
fopen does not recognize the "b" that signals binary access, since that is mean-
ingless on UNIX systems, nor the "+" that permits both reading and writing.

The first call to getc for a particular file finds a count of zero, which forces
acall of _fillpbuf. If _fillbuf finds that the file is not open for reading, it
returns EOF immediately. Otherwise, it tries to allocate a buffer (if reading is to
be buffered).

Once the buffer is established, fillbuf calls read to fill it, sets the count
and pointers, and returns the character at the beginning of the buffer. Subse-
quent calls to _fillbuf will find a buffer allocated.

#include "syscalls.h"

/* _fillbuf: allocate and fill input buffer */
int _fillbuf(FILE *fp)

{
int bufsize;
if ((fp->flag&(_READ| EOF|_ERR)) != _READ)
return EOF;
bufsize = (fp->flag & _UNBUF) ? 1 : BUFSIZ;
if (fp->base == NULL) /* no buffer yet */
if ((fp->base = (char *) malloc(bufsize)) == NULL)
return EOF; /* can't get buffer */
fp->ptr = fp->base;
fp->cnt = read(fp->£fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {
if (fp->cnt == -1)
fp->flag |= _EOF;
else
fp->flag |= _ERR;
fp->cnt = 0;
return EOF;
}
return (unsigned char) *fp->ptr++;
¥

The only remaining loose end is how everything gets started. The array
_iob must be defined and initialized for stdin, stdout and stderr:

FILE _iob[OPEN_MAX] = { /* stdin, stdout, stderr: */
{ 0, (char *) 0, (char *) 0, _READ, 0 },
{ 0, (char *) 0, (char *) 0, _WRITE, 1 },
{ 0, (char *) 0, (char *) 0, _WRITE | _UNBUF, 2 }
b

The initialization of the flag part of the structure shows that stdin is to be
read, stdout is to be written, and stderr is to be written unbuffered.



8.6. EXAMPLE—LISTING DIRECTORIES 179

Exercise 8-2. Rewrite fopen and _fillbuf with fields instead of explicit bit
operations. Compare code size and execution speed. [

Exercise 8-3. Design and write _flushbuf, fflush, and fclose. []

Exercise 8-4. The standard library function

int fseek(FILE *fp, long offset, int origin)

1s identical to 1seek except that fp is a file pointer instead of a file descrip-
tor and the return value is an int status, not a position. Write £seek. Make
sure that your £seek coordinates properly with the buffering done for the other
functions of the library. [

8.6 Example—Listing Directories

A different kind of file system interaction is sometimes called for—
determining information about a file, not what it contains. A directory-listing
program such as the UNIX command 1s is an example—it prints the names
of files in a directory, and, optionally, other information, such as sizes,
permissions, and so on. The MS-DOS dir command is analogous.

Since a UNIX directory is just a file, 1s need only read it to retrieve the
filenames. But it is necessary to use a system call to access other information
about a file, such as its size. On other systems, a system call may be needed even
to access filenames; this is the case on MS-DOS, for instance. What we want is
provide access to the information in a relatively system-independent way, even
though the implementation may be highly system-dependent.

We will illustrate some of this by writing a program called fsize. fsize is
a special form of 1s that prints the sizes of all files named in its command-line
argument list. If one of the files is a directory, £size applies itself recursively to
that directory. If there are no arguments at all, it processes the current directory.

Let us begin with a short review of UNIX file system structure. A directory
is a file that contains a list of filenames and some indication of where they are
located. The “location” is an index into another table called the “inode list.”
The inode for a file is where all information about a file except its name is kept. A
directory entry generally consists of only two items, the filename and an inode
number.

Regrettably, the format and precise contents of a directory are not the same
on all versions of the system. So we will divide the task into two pieces to try
to isolate the non-portable parts. The outer level defines a structure called a
Dirent and three routines opendir, readdir, and closedir to provide system-
independent access to the name and inode number in a directory entry. We will
write £size with this interface. Then we will show how to implement these on
systems that use the same directory structure as Version 7 and System V UNIX;
variants are left as exercises.
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The pirent structure contains the inode number and the name. The maxi-
mum length of a filename component is NAME_MAX, which is a system-dependent
value. opendir returns a pointer to a structure called pIRr, analogous to FILE,
which is used by readdir and closedir. This information is collected into a
file called dirent.n.

#define NAME MAX 14 /* longest filename component; */
/* system-dependent */

typedef struct { /* portable directory entry: */
long ino; /* inode number */
char name[NAME_MAX+1]; /* name + '\0' terminator */
} Dirent;
typedef struct { /* minimal DIR: no buffering, etc. */
int f4d; /* file descriptor for directory */
Dirent d; /* the directory entry */
} DIR;

DIR *opendir(char *dirname);
Dirent *readdir(DIR *dfd);
void closedir(DIR *dfd);

The system call stat takes a filename and returns all of the information in
the inode for that file, or -1 if there is an error. That is,

char *name;
struct stat stbuf;
int stat(char *, struct stat *);

stat(name, &stbuf);

fills the structure stbuf with the inode information for the file name. The struc-
ture describing the value returned by stat is in <sys/stat.h>, and typically
looks like this:

struct stat /* inode information returned by stat */
{
dev_t st_dev; /* device of inode */
ino_t st_ino; /* inode number */
short st_mode; /* mode bits */
short st_nlink; /* number of links to file */
short st_uid; /* owners user id */
short st_gid; /* owners group id */
dev_t st_rdev; /* for special files */
off t st_size; /* file size in characters */
time_t st_atime; /* time last accessed */
time_t st_mtime; /* time last modified */
time_t st_ctime; /* time inode last changed */
Y
Most of these values are explained by the comment fields. The types like dev_t
and ino_t are defined in <sys/types.h>, which must be included too.
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The st_mode entry contains a set of flags describing the file. The flag def-
initions are also included in <sys/stat.h>; we need only the part that deals

with file type:

#define S_IFMT 0160000 /* type of file: */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */

#define S
#define S

/* ... %/

_IFBLK 0060000 /* block special */
_IFREG 0100000 /* regular */

Now we are ready to write the program fsize. If the mode obtained from
stat indicates that a file is not a directory, then the size is at hand and can be
printed directly. If the file is a directory, however, then we have to process that
directory one file at a time; it may in turn contain sub-directories, so the process

18 recursive.

The main routine deals with command-line arguments; it hands each argu-

ment to the functi

#include
#include
#include
#include
#include
#include
#include

void fsiz

on fsize.

<stdio.h>

<string.h>

"syscalls.h"

<fcntl.h> /* flags for read and write */
<sys/types.h> /* typedefs */

<sys/stat.h> /* structure returned by stat */
"dirent.h"

e(char *);

/* print file sizes */
main(int argc, char **argv)
{
if (argc == 1) /* default: current directory */
fsize(".");
else

while (--argc > 0)

fsize(*++argv);

return 0;

The function £size prints the size of the file. If the file is a directory, how-
ever, fsize first calls dirwalk to handle all the files in it. Note how the flag
names S_IFMT and s_IFDIR from <sys/stat.h> are used to decide if the file
is a directory. Parenthesization matters, because the precedence of & is lower

than that of ==.
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int stat(char *, struct stat *);
void dirwalk(char *, void (*fcn)(char *));

/* fsize: print size of file "name" */
void fsize(char *name)

{
struct stat stbuf;
if (stat(name, &stbuf) == -1) {
fprintf(stderr, "fsize: can't access %s\n", name);
return;
}
if ((stbuf.st_mode & S_IFMT) == S_IFDIR)
dirwalk(name, fsize);
printf("%81d %s\n", stbuf.st_size, name);
)

The function dirwalk is a general routine that applies a function to each
file in a directory. It opens the directory, loops through the files in it, calling
the function on each, then closes the directory and returns. Since fsize calls
dirwalk on each directory, the two functions call each other recursively.

#define MAX PATH 1024

/* dirwalk: apply fcn to all files in dir */
void dirwalk(char *dir, void (*fcn)(char *))
{

char name[MAX PATH];

Dirent *dp;

DIR *dfd;

if ((dfd = opendir(dir)) == NULL) {
fprintf(stderr, "dirwalk: can't open %s\n", dir);

return;
}
while ((dp = readdir(dfd)) != NULL) {
if (strcmp(dp->name, ".") == 0
|| stremp(dp->name, "..") == 0)
continue; /* skip self and parent */
if (strlen(dir)+strlen(dp->name)+2 > sizeof(name))
fprintf(stderr, "dirwalk: name %s/%s too
long\n",
dir, dp->name);
else {
sprintf(name, "%s/%s", dir, dp->name);
(*fcn)(name);
}
}
closedir(dfd);
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Each call to readdir returns a pointer to information for the next file, or
NULL when there are no files left. Each directory always contains entries for
itself, called ". ", and its parent, ".."; these must be skipped, or the program
will loop forever.

Down to this level, the code is independent of how directories are format-
ted. The next step is to present minimal versions of opendir, readdir, and
closedir for a specific system. The following routines are for Version 7 and
System V UNIX systems; they use the directory information in the header
<sys/dir.h>, which looks like this:

#ifndef DIRSIZ
#define DIRSIZ 14

#endif
struct direct /* directory entry */
{
ino_t d_ino; /* inode number */

char d_name[DIRSIZ]; /* long name does not have '\0' */
Y

Some versions of the system permit much longer names and have a more com-
plicated directory structure.

The type ino_t is a typedef that describes the index into the inode list.
It happens to be unsigned short on the system we use regularly, but this is
not the sort of information to embed in a program; it might be different on a
different system, so the typedef is better. A complete set of “system” types is
found in <sys/types.h>.

opendir opens the directory, verifies that the file is a directory (this time by
the system call fstat, which is like stat except that it applies to a file descrip-
tor), allocates a directory structure, and records the information:

int fstat(int £fd, struct stat *);

/* opendir: open a directory for readdir calls */
DIR *opendir(char *dirname)

{
int £fd;
struct stat stbuf;
DIR *dp;
if ((f£d = open(dirname, O_RDONLY, 0)) == -1
|| fstat(fd, &stbuf) == -1
|| (stbuf.st_mode & S_IFMT) != S_IFDIR
|| (dp = (DIR *) malloc(sizeof(DIR))) == NULL)
return NULL;
dp->fd = £fd;
return dp;
¥

closedir closes the directory file and frees the space:
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/* closedir: close directory opened by opendir */
void closedir(DIR *dp)

{
if (dp) {
close(dp->£d);
free(dp);
}
)

Finally, readdir uses read to read each directory entry. If a directory slot
1s not currently in use (because a file has been removed), the inode number is
zero, and this position is skipped. Otherwise, the inode number and name are
placed in a static structure and a pointer to that is returned to the user. Each
call overwrites the information from the previous one.

#include <sys/dir.h> /* local directory structure */

/* readdir: read directory entries in sequence */
Dirent *readdir(DIR *dp)

{
struct direct dirbuf; /* local directory structure */
static Dirent d; /* return: portable structure */
while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
== sizeof(dirbuf)) {
if (dirbuf.d_ino == 0) /* slot not in use */
continue;
d.ino = dirbuf.d_ino;
strncpy(d.name, dirbuf.d_name, DIRSIZ);
d.name[DIRSIZ] = '\0'; /* ensure termination */
return &d;
}
return NULL;
¥

Although the fsize program is rather specialized, it does illustrate a
couple of important ideas. First, many programs are not “system programs”;
they merely use information that is maintained by the operating system. For
such programs, it is crucial that the representation of the information appear
only in standard headers, and that programs include those files instead of
embedding the declarations in themselves. The second observation is that
with care it 1s possible to create an interface to system-dependent objects that
is itself relatively system-independent. The functions of the standard library
are good examples.

Exercise 8-5. Modify the fsize program to print the other information
contained in the inode entry. [
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8.7 Example—A Storage Allocator

In Chapter 5, we presented a very limited stack-oriented storage allocator.
The version that we will now write is unrestricted. Calls to malloc and free
may occur in any order; malloc calls upon the operating system to obtain more
memory as necessary. These routines illustrate some of the considerations in-
volved in writing machine-dependent code in a relatively machine-independent
way, and also show a real-life application of structures, unions and typedef.

Rather than allocating from a compiled-in fixed-sized array, malloc will
request space from the operating system as needed. Since other activities in the
program may also request space without calling this allocator, the space that
malloc manages may not be contiguous. Thus its free storage is kept as a list
of free blocks. Each block contains a size, a pointer to the next block, and the
space itself. The blocks are kept in order of increasing storage address, and the
last block (highest address) points to the first.

free list

------- ‘in [4 7 in in [4 D R in 4 [4 4 e e e e

....... use use |use veveee....] use

|:| free, owned by malloc
in use, owned by malloc
not owned by malloc

When a request is made, the free list is scanned until a big-enough block
is found. This algorithm is called “first fit,” by contrast with “best fit,” which
looks for the smallest block that will satisfy the request. If the block is exactly
the size requested it is unlinked from the list and returned to the user. If the
block is too big, it is split, and the proper amount is returned to the user while
the residue remains on the free list. If no big-enough block is found, another
large chunk is obtained from the operating system and linked into the free list.

Freeing also causes a search of the free list, to find the proper place to
insert the block being freed. If the block being freed is adjacent to a free block
on either side, it is coalesced with it into a single bigger block, so storage does
not become too fragmented. Determining adjacency is easy because the free
list is maintained in order of increasing address.

One problem, which we alluded to in Chapter 5, is to ensure that the storage
returned by malloc is aligned properly for the objects that will be stored in it.
Although machines vary, for each machine there is a most restrictive type: if
the most restrictive type can be stored at a particular address, all other types
may be also. On some machines, the most restrictive type is a double; on others,
int or long suffices.
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A free block contains a pointer to the next block in the chain, a record
of the size of the block, and then the free space itself; the control information
at the beginning is called the “header.” To simplify alignment, all blocks are
multiples of the header size, and the header is aligned properly. This is achieved
by a union that contains the desired header structure and an instance of the
most restrictive alignment type, which we have arbitrarily made a long:

typedef long Align; /* for alignment to long boundary */

union header { /* block header: */
struct {
union header *ptr; /* next block if on free list */
unsigned size; /* size of this block */
} os;
Align x; /* force alignment of blocks */
Y

typedef union header Header;

The a1ign field is never used; it just forces each header to be aligned on a worst-
case boundary.

In malloc, the requested size in characters is rounded up to the proper
number of header-sized units; the block that will be allocated contains one
more unit, for the header itself, and this is the value recorded in the size field of
the header. The pointer returned by malloc points at the free space, not at the
header itself. The user can do anything with the space requested, but if anything
is written outside of the allocated space the list is likely to be scrambled.

r—» points to next free block

/ size

; address returned to user

A block returned by malloc

The size field is necessary because the blocks controlled by malloc need not be
contiguous—it is not possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep is NULL, as it is at the first
call of malloc, then a degenerate free list is created; it contains one block of
size zero, and points to itself. In any case, the free list is then searched. The
search for a free block of adequate size begins at the point (freep) where the
last block was found; this strategy helps keep the list homogeneous. If a too-big
block is found, the tail end is returned to the user; in this way the header of the
original needs only to have its size adjusted. In all cases, the pointer returned to
the user points to the free space within the block, which begins one unit beyond
the header.
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static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */

/* malloc: general-purpose storage allocator */
void *malloc(unsigned nbytes)

{
Header *p, *prevp;
Header *morecore(unsigned);
unsigned nunits;
nunits = (nbytes+sizeof(Header)-1)/sizeof(Header) + 1;
if ((prevp = freep) == NULL) { /* no free list yet */
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) { /* big enough */
if (p->s.size == nunits) /* exactly */
prevp->s.ptr = p->s.ptr;
else { /* allocate tail end */
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p+1);
3
if (p == freep) /* wrapped around free list */
if ((p = morecore(nunits)) == NULL)
return NULL; /* none left */
}
¥

The function morecore obtains storage from the operating system. The
details of how it does this vary from system to system. Since asking the sys-
tem for memory is a comparatively expensive operation, we don’t want to do
that on every call to malloc, sO morecore requests at least NALLOC units; this
larger block will be chopped up as needed. After setting the size field, morecore
inserts the additional memory into the arena by calling free.

The UNIX system call sbrk(n) returns a pointer to n more bytes of stor-
age. sbrk returns -1 if there was no space, even though NuLL would have been
a better design. The -1 must be cast to char * so it can be compared with the
return value. Again, casts make the function relatively immune to the details
of pointer representation on different machines. There is still one assumption,
however, that pointers to different blocks returned by sbrk can be meaning-
fully compared. This is not guaranteed by the standard, which permits pointer
comparisons only within an array. Thus this version of malloc is portable only
among machines for which general pointer comparison is meaningful.
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#define NALLOC 1024 /* minimum #units to request */
/* morecore: ask system for more memory */

static Header *morecore(unsigned nu)

{

char *cp, *sbrk(int);
Header *up;

if (nu < NALLOC)
nu = NALLOC;

cp = sbrk(nu * sizeof(Header));

if (cp == (char *) -1) /* no space at all */
return NULL;

up = (Header *) cp;

up->s.size = nu;

free((void *)(up+1));

return freep;

}

free itself is the last thing. It scans the free list, starting at freep, looking

for the place to insert the free block. This is either between two existing blocks
or at one end of the list. In any case, if the block being freed is adjacent to either
neighbor, the adjacent blocks are combined. The only troubles are keeping the
pointers pointing to the right things and the sizes correct.

/* free: put block ap in free list */
void free(void *ap)

{

Header *bp, *p;

bp = (Header *)ap - 1; /* point to block header */
for (p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
if (p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break; /* freed block at start or end of arena */

if (bp + bp->s.size == p->s.ptr) { /* join to upper nbr */
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;

} else
bp->s.ptr = p->s.ptr;
if (p + p->s.size == bp) { /* join to lower nbr */

p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;

} else
p->s.ptr = bp;

freep = p;

Although storage allocation is intrinsically machine-dependent, the

code above illustrates how the machine dependencies can be controlled and
confined to a very small part of the program. The use of typedef and union
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handles alignment (given that sbrk supplies an appropriate pointer). Casts
arrange that pointer conversions are made explicit, and even cope with a
badly-designed system interface. Even though the details here are related to
storage allocation, the general approach is applicable to other situations as
well.

Exercise 8-6. The standard library function calloc(n, size) returns a pointer
to n objects of size size, with the storage initialized to zero. Write calloc, by
calling malloc or by modifying it. [J

Exercise 8-7. malloc accepts a size request without checking its plausibility;
free believes that the block it is asked to free contains a valid size field.
Improve these routines so they take more pains with error checking. [J

Exercise 8-8. Write a routine bfree(p,n) that will free an arbitrary block p of
n characters into the free list maintained by malloc and free. By using bfree,
a user can add a static or external array to the free list at any time. [
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